Skip to main content

Pervasive Aided Screening System of Multiple Sclerosis from Retinal OCT Images

  • Conference paper
  • First Online:
Computer-Human Interaction Research and Applications (CHIRA 2024)

Abstract

Multiple Sclerosis (MS) is a neurodegenerative disease. As an irreversible disease, the MS screening in early stage is highly recommended. Several works suggested to diagnose MS from the retinal Optical Coherence Tomography (OCT) images, which implies layer thickness. However, a delay on MS screening is registered, caused by the unavailability of medical equipment and the low-rate of medical staff.

We propose in this paper a novel method for MS screening from OCT images captured by a pervasive devices. The main challenges is to insure a higher accurate MS screening through a processing workflow executed into smartphone device. For this purpose, we fine tune the convolutive deep neural network “Inception-V4” to extract features from OCT images, which are provided to an Extreme Learning Machine (ELM) classifier to deduce MS disease. A cross-validation process is conducted where 92.00% accuracy, 94.00% sensitivity, 90.00% specificity and 90.38% precision in average are achieved. In addition, the whole method is implemented into a mobile device, where execution time is under one second whatever the OCT image is, which is adequate to employ screening on clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petzold, A. (Ed.).: Optical Coherence Tomography in Multiple Sclerosis. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-20970-8

  2. Haines, J.D., Inglese, M., Casaccia, P.: Axonal damage in multiple sclerosis: a XONAL d AMAGE in MS. Mount Sinai J. Med. J. Transl. Personal. Med. 78(2), 231–243 (2011). https://doi.org/10.1002/msj.20246

    Article  Google Scholar 

  3. Meca-Lallana, V., et al.: Deciphering multiple sclerosis progression. Front. Neurol. 12, 608491 (2021). https://doi.org/10.3389/fneur.2021.608491

    Article  Google Scholar 

  4. Motl, R.W.: Physical activity and irreversible disability in multiple sclerosis. Exerc. Sport Sc. Rev. 38(4), 186–191 (2010). https://doi.org/10.1097/JES.0b013e3181f44fab

    Article  MATH  Google Scholar 

  5. Kafieh, R., Rabbani, H., Kermani, S.: A review of algorithms for segmentation of optical coherence tomography from retina. J. Med. Signals Sens. 3(1), 45–60 (2013)

    Article  MATH  Google Scholar 

  6. Jiang, H., Diao, Z., Yao, Y.-D.: Deep learning techniques for tumor segmentation: a review. J. Supercomput. 78(2), 1807–1851 (2022). https://doi.org/10.1007/s11227-021-03901-6

    Article  MATH  Google Scholar 

  7. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 9351, pp. 234–241. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  9. Zhang, Z., Sabuncu, M.R.: Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels (2018). https://doi.org/10.48550/ARXIV.1805.07836

  10. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv, 23 August 2016. https://doi.org/10.48550/arXiv.1602.07261

  11. Hagos, M.T., Kant, S.: Transfer Learning based Detection of Diabetic Retinopathy from Small Dataset. arXiv, 22 May 2019. https://doi.org/10.48550/arXiv.1905.07203

  12. Rehman, A.U., Taj, I.A., Sajid, M., Karimov, K.S.: An ensemble framework based on deep CNNs architecture for glaucoma classification using fundus photography. Math. Biosci. Eng. MBE 18(5), 5321–5346 (2021). https://doi.org/10.3934/mbe.2021270

    Article  MathSciNet  MATH  Google Scholar 

  13. Elloumi, Y., Abroug, N., Bedoui, M.H.: End-to-end mobile system for diabetic retinopathy screening based on lightweight deep neural network. In: The International Symposium On Intelligent Data Analysis 2022, Lecture Notes In Computer Science, vol. 13205. Springer (2022). https://doi.org/10.1007/978-3-031-01333-1_6

  14. Elloumi, Y.: Cataract grading method based on deep convolutional neural networks and stacking ensemble learning. Int. J. Imaging Syst. Technol. 32(3), 798–814 (2022). https://doi.org/10.1002/Ima.22722

  15. Boudegga, H., Elloumi, Y., Ben Abdallah, A., Kachouri, R., Bedoui, M.H.: Retinal blood vessel segmentation from high resolution fundus image using deep learning architecture. In: European Symposium On Artificial Neural Networks (Esann) 2023, Computational Intelligence And Machine Learning, p. 476, October 2023. https://doi.org/10.14428/Esann/2023.Es2023-180

  16. Elloumi, Y.: Mobile aided system of deep-learning based cataract grading from fundus images. In: The Artificial Intelligence In Medicine (Aime) Conference, 2021. https://doi.org/10.1007/978-3-030-77211-6_40

  17. He, Y., Carass, A., Solomon, S.D., Saidha, S., Calabresi, P.A., Prince, J.L.: Retinal layer parcellation of optical coherence tomography images: data resource for multiple sclerosis and healthy controls. Data Brief 22, 601–604 (2019). https://doi.org/10.1016/J.Dib.2018.12.073

  18. Ben Sayadia, S., Elloumi, Y., Kachouri, R., Akil, M., Ben Abdallah, A., Bedoui, M.H.: Automated method for real-time amd screening of fundus images dedicated for mobile devices. Med. Biol. Eng. Comput. 60, 1449–1479 (2022). https://doi.org/10.1007/S11517-022-02546-8

  19. Akil, M., Elloumi, Y.: Detection of retinal abnormalities using smartphone-captured fundus images: a survey. In: Proceeding of th Spie 10996, Real-Time Image Processing And Deep Learning 2019, 109960k, May 2019), Baltimore, Maryland (United States) (2019). https://doi.org/10.1117/12.2519094

  20. Ben Sayadia, S., Elloumi, Y., Akil, M., Bedoui, M.H.: Computational efficiency of optic disk detection on fundus image: a survey. In: Spie Proceeding On Real-Time Image And Video Processing 2018, May 2018, Orlando, Florida (United States) (2018). https://doi.org/10.1117/12.2304941

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroub Elloumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouni, S., Elloumi, Y., Djemaa, R.B. (2025). Pervasive Aided Screening System of Multiple Sclerosis from Retinal OCT Images. In: Plácido da Silva, H., Cipresso, P. (eds) Computer-Human Interaction Research and Applications. CHIRA 2024. Communications in Computer and Information Science, vol 2371. Springer, Cham. https://doi.org/10.1007/978-3-031-83845-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83845-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83844-6

  • Online ISBN: 978-3-031-83845-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics