Skip to main content

Exploring the Relationships Between Third-Party Code Use and Go Project Metadata

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2025)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1283))

Included in the following conference series:

  • 127 Accesses

Abstract

Modern software systems rely heavily on reused code, as the evolution of development ecosystems has made software reuse effortless. Automated dependency management has become the industry standard, and evolution has led to situations where software systems mainly consist of reused software, resulting in only a fraction of self-written code. This paper studies version-controlled open-source projects developed in Go, utilizing statistical methods, including hypothesis testing and cluster analysis. These tests allow for identifying trends and patterns and uncovering how the quantity of third-party code used influences project properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.1. CRC Press, New York (2013)

    Google Scholar 

  2. Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.2.1. CRC Press, New York (2013)

    Google Scholar 

  3. Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.2.2. CRC Press, New York (2013)

    Google Scholar 

  4. Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.2.3. CRC Press, New York (2013)

    Google Scholar 

  5. Anderson, D.R., Sweeney, D.J., Williams, T.A.: Hypothesis testing (2023). https://www.britannica.com/science/statistics/Residual-analysis

  6. Baum, C.F.: Quantile regression (2016). http://fmwww.bc.edu/EC-C/S2016/8823/ECON8823.S2016.nn04.slides.pdf

  7. Bevans, R.: Choosing the right statistical test (2022). https://www.scribbr.com/statistics/statistical-tests/

  8. Bhandari, P.: Correlation coefficient (2021). https://www.scribbr.com/statistics/correlation-coefficient/

  9. Bhandari, P.: Correlational research (2022). https://www.scribbr.co.uk/research-methods/correlational-research-design/

  10. Bobbitt, Z.: The four assumptions of linear regression (2020). https://www.statology.org/linear-regression-assumptions/

  11. Bruce, P., Bruce, A., Gedeck, P.: Practical Statistics for Data Scientists, 2nd edn. O’Reilly Media Inc., Sebastopol (2020)

    MATH  Google Scholar 

  12. Cassel, D.: Linus torvalds on security, AI, open source and trust (2024). https://thenewstack.io/linus-torvalds-on-security-ai-open-source-and-trust/

  13. Ciaburro, G., Ayyadevara, V.K., Perrier, A.: Hands-On Machine Learning on Google Cloud Platform. Packt Publishing, Birmingham (2018)

    MATH  Google Scholar 

  14. Cox, R.: Surviving software dependencies. Commun. ACM 17, 24–47 (2019)

    MATH  Google Scholar 

  15. Cybersecurity and Infrastructure Security Agency. Defending against sofware supply chain attacks (2021). https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf

  16. Date, S.: Introduction to the quantile regression model (2022). https://towardsdatascience.com/introduction-to-the-quantile-regression-model-648a0532f534

  17. GeeksForGeeks: Lines of code (LoC) in software engineering (2024). https://www.geeksforgeeks.org/lines-of-code-loc-in-software-engineering/

  18. GitHub: GitHub (2023). https://github.com

  19. GitHub: hhatto/gocloc (2023). https://github.com/hhatto/gocloc

  20. GitHub: Repository analysis orchestration (2024). https://github.com/haapjari/repository-analysis-orchestration/releases/tag/v1.0.2

  21. Go: Go 1.11 release notes (2018). https://go.dev/doc/go1.11

  22. Go: A tour of Go (2023). https://go.dev/tour/concurrency/1

  23. Gravetter, F.J., Wallnau, L.B.: Statistics for the Behavioral Sciences. Cengage Learning, Boston (2017)

    MATH  Google Scholar 

  24. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: understanding opportunistic design. IEEE Perv. Comput. 7, 1–9 (2008)

    Article  MATH  Google Scholar 

  25. Henkel, R.E.: Tests of Significance. Sage Publications, Inc, Beverly Hills (1976). https://doi.org/10.4135/9781412986113

  26. IBM: Quantile regression (2023). https://www.ibm.com/docs/en/spss-statistics/saas?topic=regression-quantile

  27. Investopedia: Variance inflation factor (VIF) (2023). https://www.investopedia.com/terms/v/variance-inflation-factor.asp

  28. Krueger, C.W.: Software reuse. ACM Comput. Surv. (CSUR) 24, 179 (1992)

    Article  MATH  Google Scholar 

  29. Mikkonen, T., Taivalsaari, A.: Software reuse in the era of opportunistic design. IEEE Softw. 36, 105–111 (2019)

    Article  MATH  Google Scholar 

  30. Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., Capilla, R.: On opportunistic software reuse. Computing 102(11), 2385–2408 (2020). https://doi.org/10.1007/s00607-020-00833-6

    Article  Google Scholar 

  31. Pandey, S.: The importance of code reusability in software development (2022). https://www.browserstack.com/guide/importance-of-code-reusability

  32. PennState Eberly College of Science: Stat 462: Applied regression analysis (2018). https://online.stat.psu.edu/stat462/node/177/

  33. PennState Eberly College of Science. Statistics (2023). https://online.stat.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing/p-value-approach

  34. Saied, M.A., Ouni, A., Sahraoui, H., Kula, R.G., Inoue, K., Lo, D.: Improving reusability of software libraries through usage pattern mining. J. Syst. Softw. 145, 164–179 (2018)

    Article  Google Scholar 

  35. Sharot, T.: Mindless statistics. J. Socio-Econ. 33, 587–606 (2004). https://doi.org/10.1016/j.socec.2004.09.033

    Article  MATH  Google Scholar 

  36. Sommerville, I.: Software Engineering. Pearson, London (2015)

    MATH  Google Scholar 

  37. Statology: Pearson correlation coefficient (2019). https://www.statology.org/pearson-correlation-coefficient/

  38. Tietoarkisto: Hypoteesien testaus (2023). https://www.fsd.tuni.fi/fi/palvelut/menetelmaopetus/kvanti/hypoteesi/testaus/#kritiikki

  39. Turney, S.: Pearson correlation coefficient (2022). https://www.scribbr.com/statistics/pearson-correlation-coefficient/

  40. Vial, G.: Manage the risks of software reuse. MIT Sloan Manag. Rev. 63, 62–65 (2022)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Mikkonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haapasaari, J., Aalto, P., Mikkonen, T., Mäkitalo, N. (2025). Exploring the Relationships Between Third-Party Code Use and Go Project Metadata. In: Arai, K. (eds) Advances in Information and Communication. FICC 2025. Lecture Notes in Networks and Systems, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-031-84457-7_37

Download citation

Publish with us

Policies and ethics