Abstract
Modern software systems rely heavily on reused code, as the evolution of development ecosystems has made software reuse effortless. Automated dependency management has become the industry standard, and evolution has led to situations where software systems mainly consist of reused software, resulting in only a fraction of self-written code. This paper studies version-controlled open-source projects developed in Go, utilizing statistical methods, including hypothesis testing and cluster analysis. These tests allow for identifying trends and patterns and uncovering how the quantity of third-party code used influences project properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.1. CRC Press, New York (2013)
Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.2.1. CRC Press, New York (2013)
Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.2.2. CRC Press, New York (2013)
Aggarwal, C.C., Reddy, C.K.: Data Clustering, chap. 1.2.3. CRC Press, New York (2013)
Anderson, D.R., Sweeney, D.J., Williams, T.A.: Hypothesis testing (2023). https://www.britannica.com/science/statistics/Residual-analysis
Baum, C.F.: Quantile regression (2016). http://fmwww.bc.edu/EC-C/S2016/8823/ECON8823.S2016.nn04.slides.pdf
Bevans, R.: Choosing the right statistical test (2022). https://www.scribbr.com/statistics/statistical-tests/
Bhandari, P.: Correlation coefficient (2021). https://www.scribbr.com/statistics/correlation-coefficient/
Bhandari, P.: Correlational research (2022). https://www.scribbr.co.uk/research-methods/correlational-research-design/
Bobbitt, Z.: The four assumptions of linear regression (2020). https://www.statology.org/linear-regression-assumptions/
Bruce, P., Bruce, A., Gedeck, P.: Practical Statistics for Data Scientists, 2nd edn. O’Reilly Media Inc., Sebastopol (2020)
Cassel, D.: Linus torvalds on security, AI, open source and trust (2024). https://thenewstack.io/linus-torvalds-on-security-ai-open-source-and-trust/
Ciaburro, G., Ayyadevara, V.K., Perrier, A.: Hands-On Machine Learning on Google Cloud Platform. Packt Publishing, Birmingham (2018)
Cox, R.: Surviving software dependencies. Commun. ACM 17, 24–47 (2019)
Cybersecurity and Infrastructure Security Agency. Defending against sofware supply chain attacks (2021). https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
Date, S.: Introduction to the quantile regression model (2022). https://towardsdatascience.com/introduction-to-the-quantile-regression-model-648a0532f534
GeeksForGeeks: Lines of code (LoC) in software engineering (2024). https://www.geeksforgeeks.org/lines-of-code-loc-in-software-engineering/
GitHub: GitHub (2023). https://github.com
GitHub: hhatto/gocloc (2023). https://github.com/hhatto/gocloc
GitHub: Repository analysis orchestration (2024). https://github.com/haapjari/repository-analysis-orchestration/releases/tag/v1.0.2
Go: Go 1.11 release notes (2018). https://go.dev/doc/go1.11
Go: A tour of Go (2023). https://go.dev/tour/concurrency/1
Gravetter, F.J., Wallnau, L.B.: Statistics for the Behavioral Sciences. Cengage Learning, Boston (2017)
Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: understanding opportunistic design. IEEE Perv. Comput. 7, 1–9 (2008)
Henkel, R.E.: Tests of Significance. Sage Publications, Inc, Beverly Hills (1976). https://doi.org/10.4135/9781412986113
IBM: Quantile regression (2023). https://www.ibm.com/docs/en/spss-statistics/saas?topic=regression-quantile
Investopedia: Variance inflation factor (VIF) (2023). https://www.investopedia.com/terms/v/variance-inflation-factor.asp
Krueger, C.W.: Software reuse. ACM Comput. Surv. (CSUR) 24, 179 (1992)
Mikkonen, T., Taivalsaari, A.: Software reuse in the era of opportunistic design. IEEE Softw. 36, 105–111 (2019)
Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., Capilla, R.: On opportunistic software reuse. Computing 102(11), 2385–2408 (2020). https://doi.org/10.1007/s00607-020-00833-6
Pandey, S.: The importance of code reusability in software development (2022). https://www.browserstack.com/guide/importance-of-code-reusability
PennState Eberly College of Science: Stat 462: Applied regression analysis (2018). https://online.stat.psu.edu/stat462/node/177/
PennState Eberly College of Science. Statistics (2023). https://online.stat.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing/p-value-approach
Saied, M.A., Ouni, A., Sahraoui, H., Kula, R.G., Inoue, K., Lo, D.: Improving reusability of software libraries through usage pattern mining. J. Syst. Softw. 145, 164–179 (2018)
Sharot, T.: Mindless statistics. J. Socio-Econ. 33, 587–606 (2004). https://doi.org/10.1016/j.socec.2004.09.033
Sommerville, I.: Software Engineering. Pearson, London (2015)
Statology: Pearson correlation coefficient (2019). https://www.statology.org/pearson-correlation-coefficient/
Tietoarkisto: Hypoteesien testaus (2023). https://www.fsd.tuni.fi/fi/palvelut/menetelmaopetus/kvanti/hypoteesi/testaus/#kritiikki
Turney, S.: Pearson correlation coefficient (2022). https://www.scribbr.com/statistics/pearson-correlation-coefficient/
Vial, G.: Manage the risks of software reuse. MIT Sloan Manag. Rev. 63, 62–65 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Haapasaari, J., Aalto, P., Mikkonen, T., Mäkitalo, N. (2025). Exploring the Relationships Between Third-Party Code Use and Go Project Metadata. In: Arai, K. (eds) Advances in Information and Communication. FICC 2025. Lecture Notes in Networks and Systems, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-031-84457-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-84457-7_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-84456-0
Online ISBN: 978-3-031-84457-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)