Abstract
Classifying natural language requirements (NLRs) is challenging, especially with large volumes. Research shows that Large Language Models can assist by categorizing NLRs into functional requirements (FR) and non-functional requirements (NFRs). However, Generative Pretrained Transformer (GPT) models are not typically favored for this task due to concerns about consistency. This paper investigates the consistency when a GPT model classifies NLRs into FRs and NFRs using a zero-shot learning approach. Results show that ChatGPT-4o performs better for FRs, a temperature parameter set to 1 yields the highest consistency, while NFR classification improves with higher temperatures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kassab, M.: State of practice in requirements engineering: contemporary data. Innov. Syst. Softw. Eng. 10, 235–241 (2014)
Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K.: What works better? A study of classifying requirements. In: 2017 IEEE 25th International Requirements Engineering Conference, pp. 496–501. IEEE (2017)
Bashir, S., Abbas, M., Ferrari, A., Saadatmand, M., Lindberg, P.: Requirements classification for smart allocation: a case study in the railway industry. In: 2023 IEEE 31st International Requirements Engineering Conference (RE), pp. 201–211. IEEE (2023)
Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: NoRBERT: transfer learning for requirements classification. In: 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 169–179. IEEE (2020)
Kurtanović, Z., Maalej, W.: Automatically classifying functional and non-functional requirements using supervised machine learning. In: 2017 IEEE 25th International Requirements Engineering Conference (RE), pp. 490–495. IEEE (2017)
Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. 10, 1–37 (2019)
Alhoshan, W., Ferrari, A., Zhao, L.: Zero-shot learning for requirements classification: an exploratory study. Inf. Softw. Technol. 159, 107202 (2023)
Ouyang, S., Zhang, J.M., Harman, M., Wang, M.: LLM is like a box of chocolates: the non-determinism of ChatGPT in code generation (2023). arXiv:2308.02828
Chen, B., et al.: On the use of GPT-4 for creating goal models: an exploratory study. In: 31st International Requirements Engineering Conference Workshops (REW 2023), pp. 262–271. IEEE (2023)
Larochelle, H., Erham, D., Bengio, Y.: Zero-data learning of new tasks. In: Cohn, A. (ed.) AAAI’08: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. Volume 2, pp. 646–651. ACM (2008)
Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) 36th Conference on Neural Information Processing Systems (NeurIPS 2022), pp. 22199–22213. ACM (2022)
Kaur, K., Kaur, P.: The application of AI techniques in requirements classification: a systematic mapping. Artif. Intell. Rev. 57, 57 (2024)
Winkler, J., Vogelsang, A.: Automatic classification of requirements based on convolutional neural networks. In: 2016 IEEE 24th International Requirements Engineering Conference Workshops, pp. 39–45. IEEE, Beijing, China (2016)
Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-functional requirements. Requirements Eng. 12, 103–120 (2007)
Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) Advances in Information Retrieval, ECIR 2005. Lecture Notes in Computer Science, vol. 3408, pp. 345–359. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25
Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. Wiley, Hoboken (2013)
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Egnell, B., Wesslen, A.: Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers, Boston (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Karlsson, F., Chatzipetrou, P., Gao, S., Havstorm, T.E. (2025). Exploring Classification Consistency of Natural Language Requirements Using GPT-4o. In: Papatheocharous, E., Farshidi, S., Jansen, S., Hyrynsalmi, S. (eds) Software Business. ICSOB 2024. Lecture Notes in Business Information Processing, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-031-85849-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-85849-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-85848-2
Online ISBN: 978-3-031-85849-9
eBook Packages: Computer ScienceComputer Science (R0)