Skip to main content

Towards Tool Support for Design Science Research Understanding of Novice Researchers

  • Conference paper
  • First Online:
Learning and Collaboration Technologies (HCII 2025)

Abstract

Novice researchers in Design Science Research (DSR) face challenges due to the complexity of the methodology and the extensive range of available methods. To address the gap in tool support for understanding the DSR process, this study investigates the design of a Generative AI-based conversational agent (CA) as a DSR support tool to enhance understanding among novice researchers. Using the DSR methodology, we derive design principles (DPs) from existing literature to guide the development of such tools. A prototype CA was developed and evaluated through a mixed-method approach, including think-aloud sessions and semi-structured interviews with seven novice researchers. The evaluation followed the fidelity of real-world phenomena criteria to assess the prototype’s effectiveness. The study contributes to Human-Computer Interaction (HCI) and Design Science (DS) theory by providing descriptive knowledge from the evaluation and prescriptive knowledge through actionable DPs and their instantiation, offering guidance for designing effective CAs to support the DSR process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code of Dezzi: https://github.com/researchDSRCA/dezzi.

References

  1. Kalman, M.: It requires interest, time, patience and struggle”: novice researchers’ perspectives on and experiences of the qualitative research journey. In: QRE (2019). https://doi.org/10.17583/qre.2019.4483

  2. Steuck, P., Gottschewski-Meyer, P.O., Bierschwale, D.: Questionnaires in design science research - a systematic overview. In: WI (2024)

    Google Scholar 

  3. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. Manag. Inf. Syst. Q. 28, 75 (2004)

    Google Scholar 

  4. Schoormann, T., Möller, F., Maria, M.D., Große, N.: Guiding Design Principle Projects: A Canvas for Young Design Science Researchers (2023)

    Google Scholar 

  5. Deng, Q., Ji, S.: A review of design science research in information systems: concept, process, outcome, and evaluation. PAJAIS, 1–36 (2018). https://doi.org/10.17705/1pais.10101

  6. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013). https://doi.org/10.25300/MISQ/2013/37.2.01

  7. Sturm, B., Sunyaev, A.: A good beginning makes a good ending: incipient sources of knowledge in design science research. In: ICIS (2019)

    Google Scholar 

  8. Morana, S., et al.: Tool Support for Design Science Research—Towards a Software Ecosystem: A Report from a DESRIST 2017 Workshop. CAIS, pp. 237–256 (2018). https://doi.org/10.17705/1CAIS.04317

  9. Gau, M., Maedche, A., Vom Brocke, J.: DSR buddy: a conversational agent supporting design science research activities. In: WI (2022)

    Google Scholar 

  10. Sjöström, J.: DeProX: a design process exploration tool. In: DESRIST (2017)

    Google Scholar 

  11. Khosrawi-Rad, B., Keller, P., Robra-Bissantz, S.: Introducing Vicky: a pedagogical conversational agent for the classification of learning styles. In: AMCIS (2022)

    Google Scholar 

  12. Feuerriegel, S., Hartmann, J., Janiesch, C., Zschech, P.: Generative AI. Bus. Inf. Syst. Eng. 66, 111–126 (2024). https://doi.org/10.1007/s12599-023-00834-7

  13. Fischer, M., Lanquillon, C.: Evaluation of generative AI-assisted software design and engineering: a user-centered approach. In: HCI (2024)

    Google Scholar 

  14. Wang, J., Liu, F., Chang, R.: Human-aligned GAI driven by conceptual knowledge: system, framework, and co-creation. In: HCI (2024)

    Google Scholar 

  15. Thway, M., Recatala-Gomez, J., Lim, F.S., Hippalgaonkar, K., Ng, L.W.T.: Battling Botpoop using GenAI for higher education: a study of a retrieval augmented generation Chatbot’s impact on learning. arXiv (2023)

    Google Scholar 

  16. Herwix, A., Rosenkranz, C.: A multi-perspective framework for the investigation of tool support for design science research. In: ECIS (2019)

    Google Scholar 

  17. Kuechler, B., Vaishnavi, V.: On theory development in design science research - anatomy of a research project. EJIS 17, 489–504 (2008). https://doi.org/10.1057/ejis.2008.40

    Article  Google Scholar 

  18. Jaspers, M., Steen, T., Bos, C., Geenen, M.: The think aloud method: a guide to user interface design. Int. J. Med. Inform. 73, 781–795 (2004). https://doi.org/10.1016/j.ijmedinf.2004.08.003

    Article  Google Scholar 

  19. Sonnenberg, C., vom Brocke, J.: Evaluations in the science of the artificial – reconsidering the build-evaluate pattern in design science research. Presented at the LNCS 1 May (2012). https://doi.org/10.1007/978-3-642-29863-9_28

  20. Vicente-Saez, R., Martinez-Fuentes, C.: Open Science now: a systematic literature review for an integrated definition. J. Bus. Res. 88, 428–436 (2018). https://doi.org/10.1016/j.jbusres.2017.12.043

    Article  Google Scholar 

  21. Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S., Beekhuyzen, J.: Achieving rigor in literature reviews: insights from qualitative data analysis and tool-support. In: CAIS, vol. 37 (2015). https://doi.org/10.17705/1CAIS.03708

  22. Feidakis, M., Kasnesis, P., Giatraki, E., Giannousis, C., Patrikakis, C., Monachelis, P.: Building pedagogical conversational agents, affectively correct: In: Proceedings of the 11th International Conference on Computer Supported Education, pp. 100–107. SCITEPRESS - Science and Technology Publications, Heraklion, Crete, Greece (2019). https://doi.org/10.5220/0007771001000107

  23. Afzal, S., Sengupta, B., Syed, M., Chawla, N., Ambrose, G.A., Chetlur, M.: The ABC of MOOCs: affect and its inter-play with behavior and cognition. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 279–284. IEEE, San Antonio, TX (2017). https://doi.org/10.1109/ACII.2017.8273613

  24. Chi, M.T.H., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49, 219–243 (2014). https://doi.org/10.1080/00461520.2014.965823

    Article  Google Scholar 

  25. Schlimbach, R., Zhu, X.: Let’s (not) be friends! – An intercultural experiment with German and Chinese students on the perception of power distance in pedagogical conversational agents. In: ECIS 2023 Research Papers, Kristiansand, Norway (2023)

    Google Scholar 

  26. Abu-Rasheed, H., Weber, C., Fathi, M.: Context based learning: a survey of contextual indicators for personalized and adaptive learning recommendations – a pedagogical and technical perspective. Front. Educ. 8, 1210968 (2023). https://doi.org/10.3389/feduc.2023.1210968

    Article  Google Scholar 

  27. Moltudal, S.H., Krumsvik, R.J., Høydal, K.L.: Adaptive learning technology in primary education: implications for professional teacher knowledge and classroom management. Front. Educ. 7, 830536 (2022). https://doi.org/10.3389/feduc.2022.830536

    Article  Google Scholar 

  28. Rahman, M., Watanobe, Y.: ChatGPT for education and research: opportunities, threats, and strategies. Appl. Sci. 13, 5783 (2023). https://doi.org/10.3390/app13095783

    Article  Google Scholar 

  29. Stefano, G.D., Gino, F., Pisano, G.P., Staats, B.R.: Learning by thinking: how reflection can spur progress along the learning curve. Harvard Business School NOM (2023)

    Google Scholar 

  30. March, S., Smith, G.: Design and natural science research on information technology. Decis. Support Syst. 15, 251–266 (1995). https://doi.org/10.1016/0167-9236(94)00041-2

    Article  Google Scholar 

  31. Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst. 19 (2007)

    Google Scholar 

  32. Rai, A.: Editor’s comments: diversity of design science research. MIS Q. 41, iii–xviii (2017)

    Google Scholar 

  33. Kuechler, W., Vaishnavi, V.: A framework for theory development in design science research: multiple perspectives. J. Assoc. Inf. Syst. 13 (2012)

    Google Scholar 

  34. Vom Brocke, J., Fettke, P., Gau, M., Houy, C., Morana, S.: Tool-support for design science research: design principles and instantiation. SSRN J. (2017). https://doi.org/10.2139/ssrn.2972803

    Article  Google Scholar 

  35. Alturki, A., Gable, G.G., Bandara, W.: A design science research roadmap. In: Jain, H., Sinha, A.P., Vitharana, P. (eds.) Service-Oriented Perspectives in Design Science Research, pp. 107–123. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20633-7_8

  36. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: NeurIPS (2020)

    Google Scholar 

  37. Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., Rossi, M.: Design science research contributions: finding a balance between artifact and theory. JAIS 19, 358–376 (2018). https://doi.org/10.17705/1jais.00495

  38. Vom Brocke, J., Winter, R., Hevner, A., Maedche, A.: Special issue editorial –accumulation and evolution of design knowledge in design science research: a journey through time and space. JAIS 21, 520–544 (2020). https://doi.org/10.17705/1jais.00611

  39. Chandra Kruse, L., Seidel, S., Purao, S.: Making use of design principles. In: Parsons, J., Tuunanen, T., Venable, J., Donnellan, B., Helfert, M., Kenneally, J. (eds.) Tackling Society’s Grand Challenges with Design Science, pp. 37–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39294-3_3

  40. Möller, F., Guggenberger, T.M., Otto, B.: Towards a method for design principle development in information systems. In: Hofmann, S., Müller, O., Rossi, M. (eds.) Designing for Digital Transformation. Co-Creating Services with Citizens and Industry, pp. 208–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64823-7_20

  41. Schoormann, T., Behrens, D., Knackstedt, R.: Design principles for leveraging sustainability in business modelling tools. In: ECIS (2018)

    Google Scholar 

  42. Gregor, S., Kruse, L., Seidel, S.: Research perspectives: the anatomy of a design principle. JAIS 21, 1622–1652 (2020). https://doi.org/10.17705/1jais.00649

  43. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016). https://doi.org/10.1057/ejis.2014.36

    Article  Google Scholar 

  44. Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse. VS Verlag für Sozialwissenschaften Wiesbaden (2010)

    Google Scholar 

  45. Chandra, L., Seidel, S., Gregor, S.: Prescriptive knowledge in IS research: conceptualizing design principles in terms of materiality, action, and boundary conditions. In: 2015 48th Hawaii International Conference on System Sciences, pp. 4039–4048. IEEE, HI, USA (2015). https://doi.org/10.1109/hicss.2015.485

  46. Cai, W., et al.: Bandit algorithms to personalize educational ChatBots. Mach. Learn. 110, 2389–2418 (2021). https://doi.org/10.1007/s10994-021-05983-y

    Article  MathSciNet  Google Scholar 

  47. Er-Radi, H., Aammou, S., Jdidou, A.: Personalized learning through adaptive content modification: exploring the impact of content difficulty adjustment on learner performance. Commun. Sci. Knowl. Divers. 15 (2023)

    Google Scholar 

  48. Graf, A.: Exploring the role of personalization in adaptive learning environments. IJSECS 3, 50–56 (2023). https://doi.org/10.35870/ijsecs.v3i2.1200

  49. Wambsganss, T., Soellner, M., Leimeister, J.M.: Design and evaluation of an adaptive dialog-based tutoring system for argumentation skills. In: International Conference on Information Systems (2020)

    Google Scholar 

  50. Wellnhammer, N., Dolata, M., Steigler, S., Schwabe, G.: Studying with the help of digital tutors. In: Hawaii International Conference on System Sciences (2020)

    Google Scholar 

  51. Borsci, S., et al.: The Chatbot usability scale: the design and pilot of a usability scale for interaction with AI-based conversational agents. Pers. Ubiquit. Comput. 26, 95–119 (2022). https://doi.org/10.1007/s00779-021-01582-9

    Article  Google Scholar 

  52. Stieglitz, S., Hofeditz, L., Brünker, F., Ehnis, C., Mirbabaie, M., Ross, B.: Design principles for conversational agents to support Emergency Management Agencies. Int. J. Inf. Manag. 63, 102469 (2022). https://doi.org/10.1016/j.ijinfomgt.2021.102469

    Article  Google Scholar 

  53. Anseel, F., Lievens, F., Schollaert, E.: Reflection as a strategy to enhance task performance after feedback. Organ. Behav. Hum. Decis. Process. 110, 23–35 (2009). https://doi.org/10.1016/j.obhdp.2009.05.003

    Article  Google Scholar 

  54. Ellis, S., Carette, B., Anseel, F., Lievens, F.: Systematic reflection: implications for learning from failures and successes. Curr. Dir. Psychol. Sci. 23, 67–72 (2014). https://doi.org/10.1177/0963721413504106

    Article  Google Scholar 

  55. Smith, E.R., DeCoster, J.: Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Pers. Soc. Psychol. Rev. 4, 108–131 (2000). https://doi.org/10.1207/S15327957PSPR0402_01

    Article  Google Scholar 

  56. Wang, F.H.: An exploration of online behaviour engagement and achievement in flipped classroom supported by learning management system. Comput. Educ. 114, 79–91 (2017). https://doi.org/10.1016/j.compedu.2017.06.012

    Article  Google Scholar 

  57. Gentner, D., Colhoun, J.: Analogical processes in human thinking and learning. In: Glatzeder, B., Goel, V., and Müller, A. (eds.) Towards a Theory of Thinking, pp. 35–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03129-8_3

  58. Newby, T.J., Stepich, D.A.: Learning abstract concepts: the use of analogies as a mediational strategy. J. Instr. Dev. 10, 20–26 (1987). https://doi.org/10.1007/BF02905788

    Article  Google Scholar 

  59. Saxena, P., Singh, S.K., Gupta, G.: Achieving effective learning outcomes through the use of analogies in teaching computer science. Mathematics. 11, 3340 (2023). https://doi.org/10.3390/math11153340

    Article  Google Scholar 

  60. Saxena, P., Singh, S.K., Gupta, G.: Analogy-based instruction for effective teaching of abstract concepts in computer science. In: 7th International Conference on Higher Education Advances (HEAd’21). Universitat Politècnica de València (2021). https://doi.org/10.4995/HEAd21.2021.13115

  61. Epley, N., Waytz, A., Cacioppo, J.T.: On seeing human: a three-factor theory of anthropomorphism. Psychol. Rev. 114, 864–886 (2007). https://doi.org/10.1037/0033-295X.114.4.864

    Article  Google Scholar 

  62. Diederich, S., Brendel, A.B., Morana, S., Kolbe, L.: On the design of and interaction with conversational agents: an organizing and assessing review of human-computer interaction research. JAIS 23, 96–138 (2022). https://doi.org/10.17705/1jais.00724

  63. Dau, D., Steuck, P.-F.: Towards GilGPT: an anthropomorphic conversational agent for accessible communication of agricultural research to farmers. In: GIL Tagungsband, Wieselburg (2025)

    Google Scholar 

  64. Walter, D., Steuck, P.-F., Di Maria, M., Knackstedt, R.: From Hidden Care to Being Aware: Designing a Conversational Agent to Support Informal Caregivers in Seeking Assistance During Role Transition (2024). https://doi.org/10.18420/INF2024_67

  65. Seeger, A.-M., Pfeiffer, J., Heinzl, A.: Texting with humanlike conversational agents: designing for anthropomorphism. JAIS 22, 931–967 (2021). https://doi.org/10.17705/1jais.00685

  66. Mori, M., MacDorman, K., Kageki, N.: The Uncanny Valley [from the field]. IEEE Robot. Autom. Mag. 19, 98–100 (2012). https://doi.org/10.1109/MRA.2012.2192811

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the Hannover-Hildesheim Urban Living Lab for Sustainability (HULLS) research project and was funded by the ‘zukunft.niedersachsen’ program (grant number ZN4409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bierschwale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bierschwale, D., Gottschewski-Meyer, P.O., Steuck, PF., Knackstedt, R. (2025). Towards Tool Support for Design Science Research Understanding of Novice Researchers. In: Smith, B.K., Borge, M. (eds) Learning and Collaboration Technologies. HCII 2025. Lecture Notes in Computer Science, vol 15807. Springer, Cham. https://doi.org/10.1007/978-3-031-93567-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-93567-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-93566-4

  • Online ISBN: 978-3-031-93567-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics