Abstract
Novice researchers in Design Science Research (DSR) face challenges due to the complexity of the methodology and the extensive range of available methods. To address the gap in tool support for understanding the DSR process, this study investigates the design of a Generative AI-based conversational agent (CA) as a DSR support tool to enhance understanding among novice researchers. Using the DSR methodology, we derive design principles (DPs) from existing literature to guide the development of such tools. A prototype CA was developed and evaluated through a mixed-method approach, including think-aloud sessions and semi-structured interviews with seven novice researchers. The evaluation followed the fidelity of real-world phenomena criteria to assess the prototype’s effectiveness. The study contributes to Human-Computer Interaction (HCI) and Design Science (DS) theory by providing descriptive knowledge from the evaluation and prescriptive knowledge through actionable DPs and their instantiation, offering guidance for designing effective CAs to support the DSR process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code of Dezzi: https://github.com/researchDSRCA/dezzi.
References
Kalman, M.: It requires interest, time, patience and struggle”: novice researchers’ perspectives on and experiences of the qualitative research journey. In: QRE (2019). https://doi.org/10.17583/qre.2019.4483
Steuck, P., Gottschewski-Meyer, P.O., Bierschwale, D.: Questionnaires in design science research - a systematic overview. In: WI (2024)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. Manag. Inf. Syst. Q. 28, 75 (2004)
Schoormann, T., Möller, F., Maria, M.D., Große, N.: Guiding Design Principle Projects: A Canvas for Young Design Science Researchers (2023)
Deng, Q., Ji, S.: A review of design science research in information systems: concept, process, outcome, and evaluation. PAJAIS, 1–36 (2018). https://doi.org/10.17705/1pais.10101
Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013). https://doi.org/10.25300/MISQ/2013/37.2.01
Sturm, B., Sunyaev, A.: A good beginning makes a good ending: incipient sources of knowledge in design science research. In: ICIS (2019)
Morana, S., et al.: Tool Support for Design Science Research—Towards a Software Ecosystem: A Report from a DESRIST 2017 Workshop. CAIS, pp. 237–256 (2018). https://doi.org/10.17705/1CAIS.04317
Gau, M., Maedche, A., Vom Brocke, J.: DSR buddy: a conversational agent supporting design science research activities. In: WI (2022)
Sjöström, J.: DeProX: a design process exploration tool. In: DESRIST (2017)
Khosrawi-Rad, B., Keller, P., Robra-Bissantz, S.: Introducing Vicky: a pedagogical conversational agent for the classification of learning styles. In: AMCIS (2022)
Feuerriegel, S., Hartmann, J., Janiesch, C., Zschech, P.: Generative AI. Bus. Inf. Syst. Eng. 66, 111–126 (2024). https://doi.org/10.1007/s12599-023-00834-7
Fischer, M., Lanquillon, C.: Evaluation of generative AI-assisted software design and engineering: a user-centered approach. In: HCI (2024)
Wang, J., Liu, F., Chang, R.: Human-aligned GAI driven by conceptual knowledge: system, framework, and co-creation. In: HCI (2024)
Thway, M., Recatala-Gomez, J., Lim, F.S., Hippalgaonkar, K., Ng, L.W.T.: Battling Botpoop using GenAI for higher education: a study of a retrieval augmented generation Chatbot’s impact on learning. arXiv (2023)
Herwix, A., Rosenkranz, C.: A multi-perspective framework for the investigation of tool support for design science research. In: ECIS (2019)
Kuechler, B., Vaishnavi, V.: On theory development in design science research - anatomy of a research project. EJIS 17, 489–504 (2008). https://doi.org/10.1057/ejis.2008.40
Jaspers, M., Steen, T., Bos, C., Geenen, M.: The think aloud method: a guide to user interface design. Int. J. Med. Inform. 73, 781–795 (2004). https://doi.org/10.1016/j.ijmedinf.2004.08.003
Sonnenberg, C., vom Brocke, J.: Evaluations in the science of the artificial – reconsidering the build-evaluate pattern in design science research. Presented at the LNCS 1 May (2012). https://doi.org/10.1007/978-3-642-29863-9_28
Vicente-Saez, R., Martinez-Fuentes, C.: Open Science now: a systematic literature review for an integrated definition. J. Bus. Res. 88, 428–436 (2018). https://doi.org/10.1016/j.jbusres.2017.12.043
Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S., Beekhuyzen, J.: Achieving rigor in literature reviews: insights from qualitative data analysis and tool-support. In: CAIS, vol. 37 (2015). https://doi.org/10.17705/1CAIS.03708
Feidakis, M., Kasnesis, P., Giatraki, E., Giannousis, C., Patrikakis, C., Monachelis, P.: Building pedagogical conversational agents, affectively correct: In: Proceedings of the 11th International Conference on Computer Supported Education, pp. 100–107. SCITEPRESS - Science and Technology Publications, Heraklion, Crete, Greece (2019). https://doi.org/10.5220/0007771001000107
Afzal, S., Sengupta, B., Syed, M., Chawla, N., Ambrose, G.A., Chetlur, M.: The ABC of MOOCs: affect and its inter-play with behavior and cognition. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 279–284. IEEE, San Antonio, TX (2017). https://doi.org/10.1109/ACII.2017.8273613
Chi, M.T.H., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49, 219–243 (2014). https://doi.org/10.1080/00461520.2014.965823
Schlimbach, R., Zhu, X.: Let’s (not) be friends! – An intercultural experiment with German and Chinese students on the perception of power distance in pedagogical conversational agents. In: ECIS 2023 Research Papers, Kristiansand, Norway (2023)
Abu-Rasheed, H., Weber, C., Fathi, M.: Context based learning: a survey of contextual indicators for personalized and adaptive learning recommendations – a pedagogical and technical perspective. Front. Educ. 8, 1210968 (2023). https://doi.org/10.3389/feduc.2023.1210968
Moltudal, S.H., Krumsvik, R.J., Høydal, K.L.: Adaptive learning technology in primary education: implications for professional teacher knowledge and classroom management. Front. Educ. 7, 830536 (2022). https://doi.org/10.3389/feduc.2022.830536
Rahman, M., Watanobe, Y.: ChatGPT for education and research: opportunities, threats, and strategies. Appl. Sci. 13, 5783 (2023). https://doi.org/10.3390/app13095783
Stefano, G.D., Gino, F., Pisano, G.P., Staats, B.R.: Learning by thinking: how reflection can spur progress along the learning curve. Harvard Business School NOM (2023)
March, S., Smith, G.: Design and natural science research on information technology. Decis. Support Syst. 15, 251–266 (1995). https://doi.org/10.1016/0167-9236(94)00041-2
Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst. 19 (2007)
Rai, A.: Editor’s comments: diversity of design science research. MIS Q. 41, iii–xviii (2017)
Kuechler, W., Vaishnavi, V.: A framework for theory development in design science research: multiple perspectives. J. Assoc. Inf. Syst. 13 (2012)
Vom Brocke, J., Fettke, P., Gau, M., Houy, C., Morana, S.: Tool-support for design science research: design principles and instantiation. SSRN J. (2017). https://doi.org/10.2139/ssrn.2972803
Alturki, A., Gable, G.G., Bandara, W.: A design science research roadmap. In: Jain, H., Sinha, A.P., Vitharana, P. (eds.) Service-Oriented Perspectives in Design Science Research, pp. 107–123. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20633-7_8
Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: NeurIPS (2020)
Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., Rossi, M.: Design science research contributions: finding a balance between artifact and theory. JAIS 19, 358–376 (2018). https://doi.org/10.17705/1jais.00495
Vom Brocke, J., Winter, R., Hevner, A., Maedche, A.: Special issue editorial –accumulation and evolution of design knowledge in design science research: a journey through time and space. JAIS 21, 520–544 (2020). https://doi.org/10.17705/1jais.00611
Chandra Kruse, L., Seidel, S., Purao, S.: Making use of design principles. In: Parsons, J., Tuunanen, T., Venable, J., Donnellan, B., Helfert, M., Kenneally, J. (eds.) Tackling Society’s Grand Challenges with Design Science, pp. 37–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39294-3_3
Möller, F., Guggenberger, T.M., Otto, B.: Towards a method for design principle development in information systems. In: Hofmann, S., Müller, O., Rossi, M. (eds.) Designing for Digital Transformation. Co-Creating Services with Citizens and Industry, pp. 208–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64823-7_20
Schoormann, T., Behrens, D., Knackstedt, R.: Design principles for leveraging sustainability in business modelling tools. In: ECIS (2018)
Gregor, S., Kruse, L., Seidel, S.: Research perspectives: the anatomy of a design principle. JAIS 21, 1622–1652 (2020). https://doi.org/10.17705/1jais.00649
Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016). https://doi.org/10.1057/ejis.2014.36
Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse. VS Verlag für Sozialwissenschaften Wiesbaden (2010)
Chandra, L., Seidel, S., Gregor, S.: Prescriptive knowledge in IS research: conceptualizing design principles in terms of materiality, action, and boundary conditions. In: 2015 48th Hawaii International Conference on System Sciences, pp. 4039–4048. IEEE, HI, USA (2015). https://doi.org/10.1109/hicss.2015.485
Cai, W., et al.: Bandit algorithms to personalize educational ChatBots. Mach. Learn. 110, 2389–2418 (2021). https://doi.org/10.1007/s10994-021-05983-y
Er-Radi, H., Aammou, S., Jdidou, A.: Personalized learning through adaptive content modification: exploring the impact of content difficulty adjustment on learner performance. Commun. Sci. Knowl. Divers. 15 (2023)
Graf, A.: Exploring the role of personalization in adaptive learning environments. IJSECS 3, 50–56 (2023). https://doi.org/10.35870/ijsecs.v3i2.1200
Wambsganss, T., Soellner, M., Leimeister, J.M.: Design and evaluation of an adaptive dialog-based tutoring system for argumentation skills. In: International Conference on Information Systems (2020)
Wellnhammer, N., Dolata, M., Steigler, S., Schwabe, G.: Studying with the help of digital tutors. In: Hawaii International Conference on System Sciences (2020)
Borsci, S., et al.: The Chatbot usability scale: the design and pilot of a usability scale for interaction with AI-based conversational agents. Pers. Ubiquit. Comput. 26, 95–119 (2022). https://doi.org/10.1007/s00779-021-01582-9
Stieglitz, S., Hofeditz, L., Brünker, F., Ehnis, C., Mirbabaie, M., Ross, B.: Design principles for conversational agents to support Emergency Management Agencies. Int. J. Inf. Manag. 63, 102469 (2022). https://doi.org/10.1016/j.ijinfomgt.2021.102469
Anseel, F., Lievens, F., Schollaert, E.: Reflection as a strategy to enhance task performance after feedback. Organ. Behav. Hum. Decis. Process. 110, 23–35 (2009). https://doi.org/10.1016/j.obhdp.2009.05.003
Ellis, S., Carette, B., Anseel, F., Lievens, F.: Systematic reflection: implications for learning from failures and successes. Curr. Dir. Psychol. Sci. 23, 67–72 (2014). https://doi.org/10.1177/0963721413504106
Smith, E.R., DeCoster, J.: Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Pers. Soc. Psychol. Rev. 4, 108–131 (2000). https://doi.org/10.1207/S15327957PSPR0402_01
Wang, F.H.: An exploration of online behaviour engagement and achievement in flipped classroom supported by learning management system. Comput. Educ. 114, 79–91 (2017). https://doi.org/10.1016/j.compedu.2017.06.012
Gentner, D., Colhoun, J.: Analogical processes in human thinking and learning. In: Glatzeder, B., Goel, V., and Müller, A. (eds.) Towards a Theory of Thinking, pp. 35–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03129-8_3
Newby, T.J., Stepich, D.A.: Learning abstract concepts: the use of analogies as a mediational strategy. J. Instr. Dev. 10, 20–26 (1987). https://doi.org/10.1007/BF02905788
Saxena, P., Singh, S.K., Gupta, G.: Achieving effective learning outcomes through the use of analogies in teaching computer science. Mathematics. 11, 3340 (2023). https://doi.org/10.3390/math11153340
Saxena, P., Singh, S.K., Gupta, G.: Analogy-based instruction for effective teaching of abstract concepts in computer science. In: 7th International Conference on Higher Education Advances (HEAd’21). Universitat Politècnica de València (2021). https://doi.org/10.4995/HEAd21.2021.13115
Epley, N., Waytz, A., Cacioppo, J.T.: On seeing human: a three-factor theory of anthropomorphism. Psychol. Rev. 114, 864–886 (2007). https://doi.org/10.1037/0033-295X.114.4.864
Diederich, S., Brendel, A.B., Morana, S., Kolbe, L.: On the design of and interaction with conversational agents: an organizing and assessing review of human-computer interaction research. JAIS 23, 96–138 (2022). https://doi.org/10.17705/1jais.00724
Dau, D., Steuck, P.-F.: Towards GilGPT: an anthropomorphic conversational agent for accessible communication of agricultural research to farmers. In: GIL Tagungsband, Wieselburg (2025)
Walter, D., Steuck, P.-F., Di Maria, M., Knackstedt, R.: From Hidden Care to Being Aware: Designing a Conversational Agent to Support Informal Caregivers in Seeking Assistance During Role Transition (2024). https://doi.org/10.18420/INF2024_67
Seeger, A.-M., Pfeiffer, J., Heinzl, A.: Texting with humanlike conversational agents: designing for anthropomorphism. JAIS 22, 931–967 (2021). https://doi.org/10.17705/1jais.00685
Mori, M., MacDorman, K., Kageki, N.: The Uncanny Valley [from the field]. IEEE Robot. Autom. Mag. 19, 98–100 (2012). https://doi.org/10.1109/MRA.2012.2192811
Acknowledgments
This study is part of the Hannover-Hildesheim Urban Living Lab for Sustainability (HULLS) research project and was funded by the ‘zukunft.niedersachsen’ program (grant number ZN4409).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bierschwale, D., Gottschewski-Meyer, P.O., Steuck, PF., Knackstedt, R. (2025). Towards Tool Support for Design Science Research Understanding of Novice Researchers. In: Smith, B.K., Borge, M. (eds) Learning and Collaboration Technologies. HCII 2025. Lecture Notes in Computer Science, vol 15807. Springer, Cham. https://doi.org/10.1007/978-3-031-93567-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-93567-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-93566-4
Online ISBN: 978-3-031-93567-1
eBook Packages: Computer ScienceComputer Science (R0)