Abstract
The evolvable hardware paradigm facilitates the construction of autonomous systems that can adapt to environmental changes, degrading effects in the computational resources, and varying system requirements. In this article, we first introduce evolvable hardware, then specify the models and algorithms used for designing and optimising hardware functions, present our simulation toolbox, and finally show two application studies from the adaptive pattern matching and processor design domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Garis, H.: Evolvable hardware: genetic programming of a Darwin machine. In: Intl. Conf. on Artificial Neural Nets and Genetic Algorithms, pp. 441–449. Springer, Berlin (1993)
Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving hardware with genetic learning: a first step towards building a Darwin machine. In: From Animals to Animats, pp. 417–424. MIT Press, New York (1993)
Kaufmann, P., Platzner, M.: Toward self-adaptive embedded systems: multi-objective hardware evolution. In: Architecture of Computing Systems (ARCS). LNCS, vol. 4415, pp. 199–208. Springer, Berlin (2007)
Miller, J., Thomson, P.: Cartesian genetic programming. In: European Conf. on Genetic Programming (EuroGP), pp. 121–132. Springer, Berlin (2000)
Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in Cartesian genetic programming. In: European Conf. on Genetic Programming (EuroGP), May. LNCS, vol. 3003, pp. 187–197. Springer, Berlin (2004)
Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation of modules in Cartesian genetic programming. In: Genetic and Evolutionary Computation (GECCO), pp. 1219–1226. ACM, New York (2008)
Kaufmann, P., Platzner, M.: Multi-objective intrinsic hardware evolution. In: Intl. Conf. Military Applications of Programmable Logic Devices (MAPLD) (2006)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, ETH Zurich (2001)
Knieper, T., Defo, B., Kaufmann, P., Platzner, M.: On robust evolution of digital hardware. In: Biologically Inspired Collaborative Computing (BICC). IFIP International Federation for Information Processing, vol. 268, pp. 2313. Springer, Berlin (2008)
Schumacher, T., Meiche, R., Kaufmann, P., Lübbers, E., Plessl, C., Platzner, M.: A hardware accelerator for k-th nearest neighbor thinning. In: Proc. Intl. Conf. on Engineering of Reconfigurable Systems & Algorithms (ERSA), pp. 245–251. CSREA Press (2008)
Kaufmann, P., Knieper, T., Platzner, M.: A novel hybrid evolutionary strategy and its periodization with multi-objective genetic optimizers. In: IEEE World Congress on Computational Intelligence (WCCI), Congress on Evolutionary Computation (CEC), pp. 541–548. IEEE, New York (2010)
Kaufmann, P., Platzner, M.: MOVES: a modular framework for hardware evolution. In: Adaptive Hardware and Systems (AHS), pp. 447–454. IEEE, New York (2007)
Knieper, T., Kaufmann, P., Glette, K., Platzner, M., Torresen, J.: Coping with resource fluctuations: the run-time reconfigurable functional unit row classifier architecture. In: Intl. Conf. on Evolvable Systems (ICES). LNCS, vol. 6274, pp. 250–261. Springer, Berlin (2010)
Glette, K., Torresen, J., Yasunaga, M.: An online EHW pattern recognition system applied to face image recognition. In: Applications of Evolutionary Computing (EvoWorkshops). LNCS, vol. 4448, pp. 271–280. Springer, Berlin (2007)
Torresen, J., Senland, G., Glette, K.: Partial reconfiguration applied in an on-line evolvable pattern recognition system. In: NORCHIP 2008, pp. 61–64. IEEE, New York (2008)
Glette, K., Gruber, T., Kaufmann, P., Torresen, J., Sick, B., Platzner, M.: Comparing evolvable hardware to conventional classifiers for electromyographic prosthetic hand control. In: Adaptive Hardware and Systems (AHS), pp. 32–39. IEEE, New York (2008)
Glette, K., Torresen, J., Kaufmann, P., Platzner, M.: A comparison of evolvable hardware architectures for classification tasks. In: Intl. Conf. on Evolvable Systems (ICES). LNCS, vol. 5216, pp. 22–33. Springer, Berlin (2008)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2007)
Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: Application-specific adaptation of cache mappings. In: Adaptive Hardware and Systems (AHS), pp. 11–18. IEEE, New York (2009)
Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer system modeling. IEEE Comput., 35(2), 59–67 (2002)
ARM: ARM10E Processor Family. http://www.arm.com/products/CPUs/families/ARM10EFamily.html (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Basel AG
About this chapter
Cite this chapter
Kaufmann, P., Platzner, M. (2011). Multi-objective Intrinsic Evolution of Embedded Systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0130-0_12
Publisher Name: Springer, Basel
Print ISBN: 978-3-0348-0129-4
Online ISBN: 978-3-0348-0130-0
eBook Packages: Computer ScienceComputer Science (R0)