Abstract
We survey the results of SPP 1253 project “Numerical Analysis of State-constrained Optimal Control Problems for PDEs”. In the first part, we consider Lavrentiev-type regularization of both distributed and boundary control. In the second part, we present a priori error estimates for elliptic control problems with finite-dimensional control space and state-constraints both in finitely many points and in all points of a subdomain with nonempty interior.
Mathematics Subject Classification (2000). 49K20, 49M05, 90C06, 90C34, 90C30.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch. A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optimization, 11:495–521, 2000.
J.T. Betts and S.L. Campbell. Discretize then Optimize. In D.R. Ferguson and T.J. Peters, editors, Mathematics in Industry: Challenges and Frontiers A Process View: Practice and Theory. SIAM Publications, Philadelphia, 2005.
F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer, New York, 2000.
E. Casas. Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control and Optimization, 35:1297–1327, 1997.
E. Casas. Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: Control, Optimization and Calculus of Variations, 31:345–374, 2002.
E. Casas and M. Mateos. Uniform convergence of the FEM. Applications to state constrained control problems. J. of Computational and Applied Mathematics, 21:67–100, 2002.
E. Casas, J. de los Reyes, and F. Tröltzsch. Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optimization, 19(2):616–643, 2008.
J.C. de los Reyes, P. Merino, J. Rehberg, and F. Tröltzsch. Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybern., 37:5–38, 2008.
K. Deckelnick and M. Hinze. Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal., 45:1937–1953, 2007.
K. Deckelnick and M. Hinze. Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations. In K. Kunisch, G. Of, and O. Steinbach, editors, Proceedings of ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Heidelberg, September 2007 2008. Springer.
P. Deuflhard, M. Seebass, D. Stalling, R. Beck, and H.-C. Hege. Hyperthermia treatment planning in clinical cancer therapy: Modelling, simulation, and visualization. In A. Sydow, editor, Computational Physics, Chemistry and Biology, pages 9–17. Wissenschaft und Technik-Verlag, 1997.
K. Eppler and F. Tröltzsch. Fast optimization methods in the selective cooling of steel. In M. Grötschel, S.O. Krumke, and J. Rambau, editors, Online Optimization of Large Scale Systems, pages 185–204. Springer, 2001.
R. Griesse, N. Metla, and A. Rösch. Convergence analysis of the SQP method for nonlinear mixed-constrained elliptic optimal control problems. ZAMM, 88(10):776–792, 2008.
M. Hintermüller and M. Hinze. Moreau-Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment. SIAM J. on Numerical Analysis, 47:1666–1683, 2009.
M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim., 13:865–888, 2003.
M. Hintermüller and A. Schiela. Discretization of interior point methods for state constrained elliptic optimal control problems: Optimal error estimates and parameter adjustment. COAP, published online, 2009.
M. Hintermüller and K. Kunisch. Path-following methods for a class of constrained minimization problems in function space. SIAM J. on Optimization, 17:159–187, 2006.
M. Hintermüller, F. Tröltzsch, and I. Yousept. Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numerische Mathematik, 108(4):571–603, 2008.
M. Hinze. A variational discretization concept in control constrained optimization: the linear-quadratic case. J. Computational Optimization and Applications, 30:45–63, 2005.
K. Ito and K. Kunisch. Semi-smooth Newton methods for state-constrained optimal control problems. Systems and Control Letters, 50:221–228, 2003.
K. Krumbiegel, I. Neitzel, and A. Rösch, Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints, Computational optimization and applications, online first. DOI 10.1007/s10589-010-9357-z
K. Krumbiegel and A. Rösch. A virtual control concept for state constrained optimal control problems. COAP, 43(2):213–233, 2009.
P. Merino, I. Neitzel, and F. Tröltzsch. Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, 30(2):221–236, 2010.
P. Merino, I. Neitzel, and F. Tröltzsch. On linear-quadratic elliptic optimal control problems of semi-infinite type. Applicable Analysis, 90(6):1047–1074, 2011.
P. Merino, F. Tröltzsch, and B. Vexler. Error Estimates for the Finite Element Approximation of a Semilinear Elliptic Control Problem with State Constraints and Finite Dimensional Control Space. ESAIM:Mathematical Modelling and Numerical Analysis, 44:167–188, 2010.
C. Meyer. Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern., 37:51–85, 2008.
C. Meyer and P. Philip. Optimizing the temperature profile during sublimation growth of SiC single crystals: Control of heating power, frequency, and coil position. Crystal Growth & Design, 5:1145–1156, 2005.
C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized pointwise state constraints. Computational Optimization and Applications, 33(2003-14):209–228, 2006.
C. Meyer and F. Tröltzsch. On an elliptic optimal control problem with pointwise mixed control-state constraints. In A. Seeger, editor, Recent Advances in Optimization. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 20–24, 2004, Lectures Notes in Economics and Mathematical Systems. Springer-Verlag, 2005.
I. Neitzel, U. Prüfert, and T. Slawig. Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment. Numerical Algorithms, 50:241–269, 2009.
I. Neitzel and F. Tröltzsch. On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control and Cybernetics, 37(4):1013–1043, 2008.
I. Neitzel and F. Tröltzsch. On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints. ESAIM Control, Optimisation and Calculus of Variations, 15( 2):426–453, 2009.
U. Prüfert, F. Tröltzsch, and M. Weiser. The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl., 39(2):183–218, March 2008.
R. Rannacher and B. Vexler. A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM Control Optim., 44:1844–1863, 2005.
J. Raymond and F. Tröltzsch. Second-order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst., 6:431–450, 2000.
A. Rösch and F. Tröltzsch. Existence of regular Lagrange multipliers for a nonlinear elliptic optimal control problem with pointwise control-state constraints. SIAM J. Control and Optimization, 45:548–564, 2006.
A. Rösch and F. Tröltzsch. Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. on Optimization, 17(3):776–794, 2006.
A. Schiela. Barrier methods for optimal control problems with state constraints. SIAM J. on Optimization, 20:1002–1031, 2009.
F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications. AMS, Providence, 2010.
F. Tröltzsch and I. Yousept. A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. COAP, 42(1):43–66, 2009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Basel AG
About this chapter
Cite this chapter
Neitzel, I., Tröltzsch, F. (2012). Numerical Analysis of State-constrained Optimal Control Problems for PDEs. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0133-1_24
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0132-4
Online ISBN: 978-3-0348-0133-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)