Abstract
The production of nanoscaled particulate products with exactly pre-defined characteristics is of enormous economic relevance. Although there are different particle formation routes they may all be described by one class of equations. Therefore, simulating such processes comprises the solution of nonlinear, hyperbolic integro-partial differential equations. In our project we aim to study this class of equations in order to develop efficient tools for the identification of optimal process conditions to achieve desired product properties. This objective is approached by a joint effort of the mathematics and the engineering faculty. Two model-processes are chosen for this study, namely a precipitation process and an innovative aerosol process allowing for a precise control of residence time and temperature. Since the overall problem is far too complex to be solved directly a hierarchical sequence of simplified problems has been derived which are solved consecutively. In particular, the simulation results are finally subject to comparison with experiments.
Mathematics Subject Classification (2000). Primary 35R09; Secondary 35Q70.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. Artelt, H.-J. Schmid, W. Peukert, Modelling titania formation at typical industrial process conditions: effect of structure and material properties on relevant growth mechanisms. Chem. Eng. Sci., 61 (2006), 18–32.
P.D. Christofides, Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes, Birkhäuser-Verlag 2001, 250p.
M. Escobedo, P. Laurençot, S. Mischler, On a Kinetic Equation for Coalescing Particles, Communications in Mathematical Physics, 246 (2), 2004, 237–267.
T. Fischer, D. Logashenko, M. Kirkilionis and G. Wittum, Fast Numerical Integration for Simulation of Structured Population Equations, Mathematical Models and Methods in Applied Sciences, 16 (12), 2006, 1987–2012.
M. Fliess, J. Levine, P. Martin, P. Rouchon, Sur les systèmes non linéaires differentiellement plats, C.R. Acad. Sci. Paris, 1992, I/315, 619–624.
M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples, 1995, International Journal of Control, 61 (6), 1327–1361.
J. Gradl, H.-C. Schwarzer, F. Schwertfirm, M. Manhart, W. Peukert, Precipitation of nanoparticles in a T-mixer: Coupling the particle population dynamics with hydrodynamics through direct numerical simulation, Chemical Engineering and Processing, 45 (10), 2006, 908–916.
J. Gradl, W. Peukert, Simultaneous 3D observation of different kinetic subprocesses for precipitation in a T-mixer, Chemical Engineering Science (2009), 64, 709–720.
W. Hackbusch, On the Efficient Evaluation of Coalescence Integrals in Population Balance Models, Computing 78, 2 (Oct. 2006), 145–159.
W. Hackbusch, Fast and exact projected convolution for non-equidistant grids, Computing 80, 2 (Jun. 2007), 137–168.
W. Hackbusch, Approximation of coalescence integrals in population balance models with local mass conservation, Numer. Math. 106, 4 (May, 2007), 627–657.
D.K. Henze, J.H. Seinfeld, W. Liao, A. Sandu, and G.R. Carmichael (2004), Inverse modeling of aerosol dynamics: Condensational growth, J. Geophys. Res., 109, D14201.
M.J. Hounslow, R.L. Ryall, and V.R. Marshall, A discretized population balance for nucleation, growth and aggregation. AIChE Journal, 34 (1988), 1821–1832.
J. Israelachvili, “Intermolecular and Surface Forces”, 2nd edition, Academic Press, London, Great Britain.
T. Johannessen, S.E. Pratsinis, and H. Livbjerg, Computational Fluid-particle dynamics for flame synthesis of alumina particles. Chem. Eng. Sci. 55 (2000), 177–191.
A. Kalani, P.D. Christofides, Nonlinear control of spatially inhomogeneous aerosol processes, CES 54 (1999), 2669–2678.
A. Kalani, P.D. Christofides, Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction, nucleation, condensation and coagulation, Com. and Chem. Eng. 26 (2002), 1153–1169.
J. Koch, W. Hackbusch, K. Sundmacher, H-matrix methods for linear and quasilinear integral operators appearing in population balances, Computers and Chemical Engineering, 31 (7), July 2007, 745–759.
J. Koch, W. Hackbusch, K. Sundmacher, H-matrix methods for quadratic integral operators appearing in population balances, Computers and Chemical Engineering, 32 (8), Aug. 2008, 1789–1809.
J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, E. Tsotsas, and L. Moerl, Numerical solutions of a two-dimensional population balance equation for aggregation, Proceedings of the 5th World Congress on Particle Technology, 2006.
J. Kumar, G. and Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique, Numer. Math. 110, 4 (Sep. 2008), 539–559.
Ph. Laurencot, S. Mischler, The continuous coagulation-fragmentation equations with diffusion, Arch. Rat. Mech. Anal. 162, 2002, 45–99.
D. Logashenko, T. Fischer, S. Motz, E. D. Gilles, and G. Wittum, Simulation of crystal growth and attrition in a stirred tank, Comput. Vis. Sci. 9, 3 (Oct. 2006), 175–183.
Y. Maday, J. Salomon, and G. Turinici. Monotonic time-discretized schemes in quantum control. Numerische Mathematik, 2006.
Ph. Martin, R. Murray, and P. Rouchon, Flat systems, equivalence and trajectory generation, technical report, 2003.
A. Mersmann, K. Bartosch, B. Braun, A. Eble, C. Heyer, “Möglichkeiten einer vorhersagenden Abschätzung der Kristallisationskinetik”, 2000, Chemie Ingenieur Technik 71(1-2), 17–30.
H. Mühlenweg, A. Gutsch, A. Schild, and S.E. Pratsinis, Process simulation of gasto- particle-synthesis via population balances: Investigation of three models, Chem. Eng. Sci., 57 (2002), 2305–2322.
Y. Qiu, S. Yang, ZnO Nanotetrapods: Controlled vapour-phase synthesis and application for humidity sensing, Adv. Functional Materials 2007, 17, 1345–1352.
J.M. Roquejoffre, P. Villedieu, A kinetic model for droplet coalescence in dense sprays, Math. Models Meth. Appl. Sci., 11, 2001, 867–882.
J. Salomon, Contrôle en chimie quantique: conception et analyse de schémas d’optimisation, thesis, 2005.
A. Sandu, W. Liao, G.R. Carmichael, D.K. Henze, J.H. Seinfeld, Inverse modeling of aerosol dynamics using adjoints – theoretical and numerical considerations, Aerosol Science and Technology, 39 (8), 2005,Number 8, 677–694.
H.-C. Schwarzer, W. Peukert, “Combined Experimental/Numerical Study on the Precipitation of Nanoparticles”, 2004, AIChE Journal 50 (12), 3234–3247.
H. Schwarzer, W. Peukert, Tailoring particle size through nanoparticle precipitation, Chem. Eng. Comm. 191 (2004), 580–606.
H.-C. Schwarzer, W. Peukert, Combined experimental/numerical study on the precipitation of nanoparticles, AIChE Journal 50 (2004), 3234–3247.
H.-C. Schwarzer, F. Schwertfirm, M. Manhart, H.-J. Schmid, W. Peukert, “Predictive simulation of nanoparticle precipitation based on the population balance equation”, 2006, Chemical Engineering Science 61 (1), 167–181.
D. Segets, J. Gradl, R. Klupp Taylor, V. Vassilev, W. Peukert, Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility, and Surface Energy, ACS nano (2009), 3(7), 1703–1710.
D. Segets, L.M. Tomalino, J. Gradl, W. Peukert, Real-Time Monitoring of the Nucleation and Growth of ZnO Nanoparticles Using an Optical Hyper-Rayleigh Scattering Method, J. Phys. Chem. C 2009, 113, 11995–12001.
E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin (2009).
V. Vassilev, M. Gröschel, H.-J. Schmid, W. Peukert, and G. Leugering, Interfacial energy estimation in a precipitation reaction using the flatness based control of the moment trajectories, Chemical Engineering Science (65), 2010, 2183–2189.
R. Viswanatha, S. Sapra, B. Satpati, P.V. Satyam, B. Dev and D.D. Sarma, Understanding the quantum size effects in ZnO nanocrystals, J. Mater. Chem., 14, 2004, 661–668.
U. Vollmer, J. and Raisch, Control of batch cooling crystallization processes on orbital flatness, Int. J. Control 76/16 (2003), 1635–1643.
M. Wulkow, A. Gerstlauer, U. and Nieken, Modeling and simulation of crystallization processes using parsival, Chem. Eng. Sci. 56 (2001), 2575–2588.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Basel AG
About this chapter
Cite this chapter
Gröschel, M., Leugering, G., Peukert, W. (2012). Model Reduction, Structure-property Relations and Optimization Techniques for the Production of Nanoscale Particles. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0133-1_28
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0132-4
Online ISBN: 978-3-0348-0133-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)