Skip to main content

Model Reduction, Structure-property Relations and Optimization Techniques for the Production of Nanoscale Particles

  • Chapter
  • First Online:
Constrained Optimization and Optimal Control for Partial Differential Equations

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 160))

  • 2890 Accesses

Abstract

The production of nanoscaled particulate products with exactly pre-defined characteristics is of enormous economic relevance. Although there are different particle formation routes they may all be described by one class of equations. Therefore, simulating such processes comprises the solution of nonlinear, hyperbolic integro-partial differential equations. In our project we aim to study this class of equations in order to develop efficient tools for the identification of optimal process conditions to achieve desired product properties. This objective is approached by a joint effort of the mathematics and the engineering faculty. Two model-processes are chosen for this study, namely a precipitation process and an innovative aerosol process allowing for a precise control of residence time and temperature. Since the overall problem is far too complex to be solved directly a hierarchical sequence of simplified problems has been derived which are solved consecutively. In particular, the simulation results are finally subject to comparison with experiments.

Mathematics Subject Classification (2000). Primary 35R09; Secondary 35Q70.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Artelt, H.-J. Schmid, W. Peukert, Modelling titania formation at typical industrial process conditions: effect of structure and material properties on relevant growth mechanisms. Chem. Eng. Sci., 61 (2006), 18–32.

    Google Scholar 

  2. P.D. Christofides, Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes, Birkhäuser-Verlag 2001, 250p.

    Google Scholar 

  3. M. Escobedo, P. Laurençot, S. Mischler, On a Kinetic Equation for Coalescing Particles, Communications in Mathematical Physics, 246 (2), 2004, 237–267.

    MathSciNet  MATH  Google Scholar 

  4. T. Fischer, D. Logashenko, M. Kirkilionis and G. Wittum, Fast Numerical Integration for Simulation of Structured Population Equations, Mathematical Models and Methods in Applied Sciences, 16 (12), 2006, 1987–2012.

    MathSciNet  MATH  Google Scholar 

  5. M. Fliess, J. Levine, P. Martin, P. Rouchon, Sur les systèmes non linéaires differentiellement plats, C.R. Acad. Sci. Paris, 1992, I/315, 619–624.

    MATH  Google Scholar 

  6. M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples, 1995, International Journal of Control, 61 (6), 1327–1361.

    MathSciNet  MATH  Google Scholar 

  7. J. Gradl, H.-C. Schwarzer, F. Schwertfirm, M. Manhart, W. Peukert, Precipitation of nanoparticles in a T-mixer: Coupling the particle population dynamics with hydrodynamics through direct numerical simulation, Chemical Engineering and Processing, 45 (10), 2006, 908–916.

    Google Scholar 

  8. J. Gradl, W. Peukert, Simultaneous 3D observation of different kinetic subprocesses for precipitation in a T-mixer, Chemical Engineering Science (2009), 64, 709–720.

    Google Scholar 

  9. W. Hackbusch, On the Efficient Evaluation of Coalescence Integrals in Population Balance Models, Computing 78, 2 (Oct. 2006), 145–159.

    MathSciNet  MATH  Google Scholar 

  10. W. Hackbusch, Fast and exact projected convolution for non-equidistant grids, Computing 80, 2 (Jun. 2007), 137–168.

    MathSciNet  MATH  Google Scholar 

  11. W. Hackbusch, Approximation of coalescence integrals in population balance models with local mass conservation, Numer. Math. 106, 4 (May, 2007), 627–657.

    MathSciNet  MATH  Google Scholar 

  12. D.K. Henze, J.H. Seinfeld, W. Liao, A. Sandu, and G.R. Carmichael (2004), Inverse modeling of aerosol dynamics: Condensational growth, J. Geophys. Res., 109, D14201.

    Google Scholar 

  13. M.J. Hounslow, R.L. Ryall, and V.R. Marshall, A discretized population balance for nucleation, growth and aggregation. AIChE Journal, 34 (1988), 1821–1832.

    Google Scholar 

  14. J. Israelachvili, “Intermolecular and Surface Forces”, 2nd edition, Academic Press, London, Great Britain.

    Google Scholar 

  15. T. Johannessen, S.E. Pratsinis, and H. Livbjerg, Computational Fluid-particle dynamics for flame synthesis of alumina particles. Chem. Eng. Sci. 55 (2000), 177–191.

    Google Scholar 

  16. A. Kalani, P.D. Christofides, Nonlinear control of spatially inhomogeneous aerosol processes, CES 54 (1999), 2669–2678.

    Google Scholar 

  17. A. Kalani, P.D. Christofides, Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction, nucleation, condensation and coagulation, Com. and Chem. Eng. 26 (2002), 1153–1169.

    Google Scholar 

  18. J. Koch, W. Hackbusch, K. Sundmacher, H-matrix methods for linear and quasilinear integral operators appearing in population balances, Computers and Chemical Engineering, 31 (7), July 2007, 745–759.

    Google Scholar 

  19. J. Koch, W. Hackbusch, K. Sundmacher, H-matrix methods for quadratic integral operators appearing in population balances, Computers and Chemical Engineering, 32 (8), Aug. 2008, 1789–1809.

    Google Scholar 

  20. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, E. Tsotsas, and L. Moerl, Numerical solutions of a two-dimensional population balance equation for aggregation, Proceedings of the 5th World Congress on Particle Technology, 2006.

    Google Scholar 

  21. J. Kumar, G. and Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique, Numer. Math. 110, 4 (Sep. 2008), 539–559.

    MathSciNet  MATH  Google Scholar 

  22. Ph. Laurencot, S. Mischler, The continuous coagulation-fragmentation equations with diffusion, Arch. Rat. Mech. Anal. 162, 2002, 45–99.

    MathSciNet  MATH  Google Scholar 

  23. D. Logashenko, T. Fischer, S. Motz, E. D. Gilles, and G. Wittum, Simulation of crystal growth and attrition in a stirred tank, Comput. Vis. Sci. 9, 3 (Oct. 2006), 175–183.

    MathSciNet  Google Scholar 

  24. Y. Maday, J. Salomon, and G. Turinici. Monotonic time-discretized schemes in quantum control. Numerische Mathematik, 2006.

    Google Scholar 

  25. Ph. Martin, R. Murray, and P. Rouchon, Flat systems, equivalence and trajectory generation, technical report, 2003.

    Google Scholar 

  26. A. Mersmann, K. Bartosch, B. Braun, A. Eble, C. Heyer, “Möglichkeiten einer vorhersagenden Abschätzung der Kristallisationskinetik”, 2000, Chemie Ingenieur Technik 71(1-2), 17–30.

    Google Scholar 

  27. H. Mühlenweg, A. Gutsch, A. Schild, and S.E. Pratsinis, Process simulation of gasto- particle-synthesis via population balances: Investigation of three models, Chem. Eng. Sci., 57 (2002), 2305–2322.

    Google Scholar 

  28. Y. Qiu, S. Yang, ZnO Nanotetrapods: Controlled vapour-phase synthesis and application for humidity sensing, Adv. Functional Materials 2007, 17, 1345–1352.

    Google Scholar 

  29. J.M. Roquejoffre, P. Villedieu, A kinetic model for droplet coalescence in dense sprays, Math. Models Meth. Appl. Sci., 11, 2001, 867–882.

    MathSciNet  MATH  Google Scholar 

  30. J. Salomon, Contrôle en chimie quantique: conception et analyse de schémas d’optimisation, thesis, 2005.

    Google Scholar 

  31. A. Sandu, W. Liao, G.R. Carmichael, D.K. Henze, J.H. Seinfeld, Inverse modeling of aerosol dynamics using adjoints – theoretical and numerical considerations, Aerosol Science and Technology, 39 (8), 2005,Number 8, 677–694.

    Google Scholar 

  32. H.-C. Schwarzer, W. Peukert, “Combined Experimental/Numerical Study on the Precipitation of Nanoparticles”, 2004, AIChE Journal 50 (12), 3234–3247.

    Google Scholar 

  33. H. Schwarzer, W. Peukert, Tailoring particle size through nanoparticle precipitation, Chem. Eng. Comm. 191 (2004), 580–606.

    Google Scholar 

  34. H.-C. Schwarzer, W. Peukert, Combined experimental/numerical study on the precipitation of nanoparticles, AIChE Journal 50 (2004), 3234–3247.

    Google Scholar 

  35. H.-C. Schwarzer, F. Schwertfirm, M. Manhart, H.-J. Schmid, W. Peukert, “Predictive simulation of nanoparticle precipitation based on the population balance equation”, 2006, Chemical Engineering Science 61 (1), 167–181.

    Google Scholar 

  36. D. Segets, J. Gradl, R. Klupp Taylor, V. Vassilev, W. Peukert, Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility, and Surface Energy, ACS nano (2009), 3(7), 1703–1710.

    Google Scholar 

  37. D. Segets, L.M. Tomalino, J. Gradl, W. Peukert, Real-Time Monitoring of the Nucleation and Growth of ZnO Nanoparticles Using an Optical Hyper-Rayleigh Scattering Method, J. Phys. Chem. C 2009, 113, 11995–12001.

    Google Scholar 

  38. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin (2009).

    MATH  Google Scholar 

  39. V. Vassilev, M. Gröschel, H.-J. Schmid, W. Peukert, and G. Leugering, Interfacial energy estimation in a precipitation reaction using the flatness based control of the moment trajectories, Chemical Engineering Science (65), 2010, 2183–2189.

    Google Scholar 

  40. R. Viswanatha, S. Sapra, B. Satpati, P.V. Satyam, B. Dev and D.D. Sarma, Understanding the quantum size effects in ZnO nanocrystals, J. Mater. Chem., 14, 2004, 661–668.

    Google Scholar 

  41. U. Vollmer, J. and Raisch, Control of batch cooling crystallization processes on orbital flatness, Int. J. Control 76/16 (2003), 1635–1643.

    MathSciNet  MATH  Google Scholar 

  42. M. Wulkow, A. Gerstlauer, U. and Nieken, Modeling and simulation of crystallization processes using parsival, Chem. Eng. Sci. 56 (2001), 2575–2588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gröschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Gröschel, M., Leugering, G., Peukert, W. (2012). Model Reduction, Structure-property Relations and Optimization Techniques for the Production of Nanoscale Particles. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_28

Download citation

Publish with us

Policies and ethics