Skip to main content

A Space-Time Multigrid Method for Optimal Flow Control

  • Chapter
  • First Online:

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 160))

Abstract

We present a hierarchical solution concept for optimization problems governed by the time-dependent Navier–Stokes system. Discretisation is carried out with finite elements in space and a one-step-θ-scheme in time. By combining a Newton solver for the treatment of the nonlinearity with a space-time multigrid solver for linear subproblems, we obtain a robust solver whose convergence behaviour is independent of the refinement level of the discrete problem. A set of numerical examples analyses the solver behaviour for various problem settings with respect to efficiency and robustness of this approach.

Mathematics Subject Classification (2000). 35Q30, 49K20, 49M05, 49M15, 49M29, 65M55, 65M60, 76D05, 76D55.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.V. Alekseyev and V.V. Malikin. Numerical analysis of optimal boundary control problems for the stationary Navier-Stokes equations. Computational Fluid Dynamics Journal, 3(1):1–26, 1994.

    Google Scholar 

  2. R.E. Bank and T.F. Dupond. An optimal order process for solving finite element equations. Math. Comput., 36(153):35–51, 1981.

    MathSciNet  Google Scholar 

  3. G. Bärwolff and M. Hinze. Optimization of semiconductor melts. Zeitschrift für Angewandte Mathematikund Mechanik, 86:423–437, 2006.

    MathSciNet  MATH  Google Scholar 

  4. A. Borzi. Multigrid methods for parabolic distributed optimal control problems. Journal of Computational and Applied Mathematics, 157:365–382, 2003.

    MathSciNet  MATH  Google Scholar 

  5. S.C. Brenner. An optimal-order multigrid method for 𝑃1 nonconforming finite elements. Math. Comput., 52(185):1–15, 1989.

    MATH  Google Scholar 

  6. G. Büttner. Ein Mehrgitterverfahren zur optimalen Steuerung parabolischer Probleme. PhD thesis, Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin, 2004. http://edocs.tu-berlin.de/diss/2004/buettner_guido_OnlinePDF.pdf.

  7. Ph.G. Ciarlet. The finite element method for elliptic problems. Studies in mathematics and its applications, Vol. 4. North-Holland Publishing Company, Amsterdam, New-York, Oxford, 1978. ISBN 0444850287.

    Google Scholar 

  8. H. Goldberg and F. Tröltzsch. On a SQP-multigrid technique for nonlinear parabolic boundary control problems. In W.W. Hager and P.M. Pardalos, editors, Optimal Control: Theory, Algorithms, and Applications, pages 154–174. Kluwer, 1998.

    Google Scholar 

  9. M. Gunzburger, E. Ozugurlu, J. Turner, and H. Zhang. Controlling transport phenomena in the czochralski crystal growth process. Journal of Crystal Growth, 234:47–62, 2002.

    Google Scholar 

  10. W. Hackbusch. Fast solution of elliptic optimal control problems. J. Opt. Theory and Appl., 31(4):565–581, 1980.

    MATH  Google Scholar 

  11. W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985. ISBN 3-540-12761-5.

    MATH  Google Scholar 

  12. W. Hackbusch. Multigrid methods for FEM and BEM applications. In E. Stein, R. de Borst, and Th.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, chapter 20. John Wiley & Sons Ltd., 2004.

    Google Scholar 

  13. M. Hintermüller and M. Hinze. A SQP-semi-smooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints. Siam J. Optim., 16:1177–1200, 2006.

    MathSciNet  MATH  Google Scholar 

  14. M. Hinze. Optimal and instantaneous control of the instationary Navier-Stokes equations. Institut füsr Numerische Mathematik, Technische Universität Dresden, 2000. Habilitation.

    Google Scholar 

  15. M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys., 223:657–684, 2007.

    MathSciNet  MATH  Google Scholar 

  16. M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. Z. Angew. Math. Mech., 87:430–448, 2007.

    MathSciNet  MATH  Google Scholar 

  17. M. Hinze and S. Ziegenbalg. Optimal control of the phase interface during solidification of a GaAs melt. Proc. Appl. Math. Mech., 311(8):2501–2507, 2008.

    Google Scholar 

  18. M. Köster. Robuste Mehrgitter-Krylowraum-Techniken für FEM-Verfahren, 2007. Diplomarbeit, Universität Dortmund, Diplomarbeit, http://www.mathematik.tu-dortmund.de/lsiii/static/schriften_eng.html.

  19. NETLIB. LAPACK – Linear Algebra PACKage, 1992. http://www.netlib.org/lapack/.

  20. R. Schmachtel. Robuste lineare und nichtlineare Lösungsverfahren für die inkompressiblen Navier-Stokes-Gleichungen. PhD thesis, TU Dortmund, June 2003. http://www.mathematik.tu-dortmund.de/lsiii/static/schriften_eng.html.

  21. S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Springer, Berlin, 1999. ISBN 3-540-65433-X.

    MATH  Google Scholar 

  22. S. Turek, Ch. Becker, and S. Kilian. Hardware-oriented numerics and concepts for PDE software. Future Generation Computer Systems, 22(1-2):217–238, 2006. doi: 10.1016/j.future.2003.09.007.

    Google Scholar 

  23. S. Turek, D. Göddeke, Ch. Becker, S.H.M. Buijssen, and H. Wobker. FEAST – realization of hardware-oriented numerics for HPC simulations with finite elements. Concurrency and Computation: Practice and Experience, 2010. Special Issue Proceedings of ISC 2008, accepted.

    Google Scholar 

  24. M. Ulbrich. Constrained optimal control of Navier-Stokes flow by semismooth Newton methods. Systems Control Lett., 48:297–311, 2003.

    MathSciNet  MATH  Google Scholar 

  25. S.P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. Journal of Computational Physics, 65:138–158, 1986.

    MathSciNet  MATH  Google Scholar 

  26. H. Wobker and S. Turek. Numerical studies of Vanka-type smoothers in computational solid mechanics. Advances in Applied Mathematics and Mechanics, 1(1):29–55, 2009.

    MathSciNet  Google Scholar 

  27. H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numerica, pages 1–44, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Köster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Hinze, M., Köster, M., Turek, S. (2012). A Space-Time Multigrid Method for Optimal Flow Control. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_8

Download citation

Publish with us

Policies and ethics