Abstract
When combining the numerical concept of variational discretization introduced in [Hin03, Hin05] and semi-smooth Newton methods for the numerical solution of pde constrained optimization with control constraints [HIK03, Ulb03] special emphasis has to be placed on the implementation, convergence and globalization of the numerical algorithm. In the present work we address all these issues following [HV]. In particular we prove fast local convergence of the algorithm and propose a globalization strategy which is applicable in many practically relevant mathematical settings. We illustrate our analytical and algorithmical findings by numerical experiments.
Mathematics Subject Classification (2000). 49J20, 49K20, 49M15.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klaus Deckelnick and Michael Hinze. Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal., 45(5):1937–1953, 2007.
Klaus Deckelnick and Michael Hinze. A finite element approximation to elliptic control problems in the presence of control and state constraints. Preprint, Hamburger Beitr. z. Ang. Math. 2007–01, 2007.
M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim., 13(3):865–888, 2003.
Michael Hinze. A generalized discretization concept for optimal control problems with control constraints. Technical Report Preprint MATH-NM-02-2003, Institut für Numerische Mathematik, Technische Universität Dresden, 2003.
Michael Hinze. A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl., 30(1):45–61, 2005.
Michael Hinze and Christian Meyer. Numerical analysis of Lavrentievregularized state-constrained elliptic control problems. Comp. Optim. Appl., 2008.
M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints. Mathematical Modelling: Theory and Applications 23. Dordrecht: Springer., 2009.
Michael Hintermüller and Michael Ulbrich. A mesh-independence result for semismooth Newton methods. Mathematical Programming, 101:151–184, 2004.
Michael Hinze and Morten Vierling. A globalized semi-smooth Newton method for variational discretization of control constrained elliptic optimal control problems. In Constrained Optimization and Optimal Control for Partial Differential Equations. Birkhäuser, 2011, to appear.
Klaus Krumbiegel and Arnd Rösch. A new stopping criterion for iterative solvers for control constrained optimal control problems. Archives of Control Sciences, 18(1):17–42, 2008.
Michael Ulbrich. Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim., 13(3):805–841, 2003.
Michael Ulbrich. A new mesh-independence result for semismooth Newton methods. Oberwolfach Rep., 4:78–81, 2009.
Morten Vierling. Ein semiglattes Newtonverfahren für semidiskretisierte steuerungsbeschränkte Optimalsteuerungsprobleme. Master’s thesis, Universität Hamburg, 2007.
Stefan Volkwein and Fredi Tröltzsch. Pod a posteriori error estimates for linear-quadratic optimal control problems. Computational Optimization and Applications, 44(1):83–115, 2009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Basel AG
About this chapter
Cite this chapter
Hinze, M., Vierling, M. (2012). A Globalized Semi-smooth Newton Method for Variational Discretization of Control Constrained Elliptic Optimal Control Problems. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0133-1_9
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0132-4
Online ISBN: 978-3-0348-0133-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)