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Abstract. A computational framework for determining optimal control
fields for inducing energy state transitions in systems of several fermions
in an infinite potential quantum well is presented. The full multiparticle
system is numerically approximated using linear combinations of Slater
determinants constructed from nodal trial functions, which leads to di-
agonalized matrix approximations of variable coefficient terms. First and
second order optimality conditions are given for the control and a robust
line search is described for computing a local minimizer.
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1. Introduction

In recent years there has been growing interest in controlled quantum phe-
nomena by means of external fields. The aim of quantum control is to effect
change on a system whose dynamics are governed by the time-dependent
Schrödinger equation such that the system reaches a particular configura-
tion. Some applications for quantum control include quantum bits and logic
devices, controlled chemical processes, and investigation of fundamental phe-
nomena. Following the initial work of Peirce, Daleh, and Rabitz [12], the
Lagrangian based optimal control strategy has become prevalent for deter-
mining the control field which drives a quantum system closest to a target
state at a specified time. Optimal controls are typically computed using ei-
ther monotonically convergent schemes [10], gradient based schemes such as
nonlinear conjugate gradients, BFGS [15], or inexact Newton methods [17].
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In practice, multiparticle systems are usually approximated using a
many body approximation such as the Hubbard model, Born–Oppenheimer
approximation, or Multiconfigurational Time-Dependent Hartree(–Fock)
(MCTDH(F)) methods [11, 6], which tends to give a good approximation
for large numbers of particles, but may be inaccurate when there are only a
few particles. In this current work, we present an efficient discretization and
optimal control technique for inducing state transitions in a one-dimensional
system of noninteracting or interacting fermions. The basic approach for dis-
cretizing the multiple fermion system has been described in detail in [4] and
the Krylov–Newton method for a single particle system has been presented
in [16]. The current work, however, contains the first application of Newton’s
method to the multiparticle optimal control problem.

In most quantum control literature where the time-dependent Schrö-
dinger equation (TDSE) is used as an equality constraint, one of the most
common approaches is to replace the partial differential equation with a finite
dimensional system of ordinary differential equations so there is a two or
three level system [2, 1, 5, 13]. This method usually assumes the structure of
the Hamiltonian in the eigenfunction basis and further assumes that higher
level states play no role in the dynamics. It does, however, capture the basic
bilinear structure of the full problem and is attractive since the small systems
that result can be solved numerically very quickly.

Alternately, the TDSE may be discretized, for example, with the finite
difference method [7], which also gives a finite dimensional, albeit consider-
ably larger, system of equations. This approach is numerically more expen-
sive, but makes direct use of the physical potential and allows for coupling
into higher energy states. It may be the case, however, that the discretization
may be superfluous in the sense that the method resolves states which do not
have a significant occupation probability.

The approach in the current work it to combine both of these ideas.
We discretize the multiparticle Hamiltonian directly and compute its eigen-
vectors which are used as a modal basis for the state. This would be the
simplest version of the proper orthogonal decomposition (POD) applied to
a symmetric quadratic problem, however, we do not use the term POD in
this work as this approach of diagonalizing the Hamiltonian is completely
standard practice in quantum mechanics. What is distinct here is that the
diagonalization follows a spectral discretization of the full interaction prob-
lem and that the basis of eigenvectors is permuted for efficiency of solving
the control problem. That is to say, the eigenvectors are ranked in impor-
tance to the problem by a heuristic method described below and the state
is projected onto the first few selected vectors. The optimal control problem
is then solved on this reduced basis. The state space is then augmented by
adding the next few most important vectors and the optimization routine is
restarted using the computed optimal control from the previous step. This
process is repeated until augmenting the state space has no perceptible effect
on the cost functional.
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The organization of the paper is as follows: in section two, basic proper-
ties of fermionic systems in one dimension are presented. In section three, we
give the space and time discretizations for the multiparticle system. In sec-
tion four, the control problem is formulated and the state reduction method
is described. Section five presents some computed optimal controls for the
quantum well containing two, three, and four fermions, and section six con-
tains the conclusion and discussion of future work.

2. Multiparticle systems in one dimension

To understand the time-dependent Schrödinger equation for multiple inter-
acting fermions, it is advantageous first to consider the two particle case
before its generalization to n particles. The TDSE for two fermions is

i∂tψ(x1, x2, t) =
{
−(∂2

x1
+ ∂2

x2
) + V (x1, x2, t)

}
ψ(x1, x2, t). (2.1)

The wavefunction ψ(x1, x2, t) contains information about both particles and
in particular, moreover, following the Born rule, its modulus squared is un-
derstood to be a probability density function. The stationary states for the
particle system are the solutions to the eigenvalue problem:{

−(∂2
x1

+ ∂2
x2

) + V (x1, x2)
}
φj(x1, x2, t) = λjφ(x1, x2), (2.2)

where the eigenvalue λj is the energy. Since these form a complete basis,
the time dependent solution can be expanded as a linear combination of the
eigenfunctions using time dependent coefficients:

ψ(x1, x2, t) =

∞∑
k=1

ck(t)φk(x1, x2). (2.3)

Since the particles are indistinguishable, it is required that that this proba-
bility function be invariant under exchange of the particles, i.e.,

|φ(x1, x2)|2 = |φ(x2, x1)|2 ⇒ φ(x2, x1) = φ(x1, x2)eiθ. (2.4)

This means that eiθ is the eigenvalue of a permutation operator P where
Pφ(x1, x2) = φ(x2, x1) = eiθφ(x1, x2). Since P 2 = I, it follows that for two
identical particles that φ(x1, x2) = ±φ(x2, x1). The Pauli exclusion princi-
ple for fermions stipulates that the wavefunction is antisymmetric. In the
time independent case, if there is no interaction between the particles, then
V (x1, x2) = V1(x1) +V2(x2) and the system is said to be decomposable. The
problem is separated into two uncoupled univariate problems by writing the
Ansatz

φ(x1, x2) = φ1(x1)φ2(x2)− φ1(x2)φ1(x2) =

∣∣∣∣φ1(x1) φ2(x1)
φ1(x2) φ2(x2)

∣∣∣∣ , (2.5)
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Figure 1. Two noninteracting fermions: state |1, 2〉 and |1, 3〉

where the determinant on the right hand side is called a Slater determinant.
The eigenproblem can be separated into two uncoupled one-dimensional prob-
lems {

−∂2
x1

+ V1(x1)
}
φj1(x1) = λj1φj1(x1),{

−∂2
x2

+ V2(x2)
}
φj2(x2) = λj2φj2(x2).

(2.6)

More generally for n non-interacting particles, the stationary states are still
Slater determinants of size n:

φ(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φn(x1)
φ1(x2) φ2(x2) · · · φn(x2)

...
...

. . .
...

φ1(xn) φ2(xn) · · · φn(xn)

∣∣∣∣∣∣∣∣∣ . (2.7)

Consider the example of two noninteracting fermions in an infinite po-
tential square quantum well with x ∈ [0, 1]. The single particle eigenfunctions
and eigenvalues are

φj(x) = sin(πjx), λj = (jπ)2. (2.8)

The first two eigenfunctions for the two particle problem are

|1, 2〉 ≡ φ1(x1, x2) = sin(πx1) sin(2πx2)− sin(2πx1) sin(πx2),

|1, 3〉 ≡ φ2(x1, x2) = sin(πx1) sin(3πx2)− sin(3πx1) sin(πx2),
(2.9)

and the corresponding eigenvalues are λ1 = 5π2 and λ2 = 10π2. The first
and second states are shown in figure 1.

If we add a third noninteracting fermion to the same well, then the first
state |1, 2, 3〉 is the eigenfunction

φ1(x1, x2, x3) = sin(πx1)[sin(2πx2) sin(3πx3)− sin(3πx2) sin(2πx3)]

+ sin(2πx1)[sin(3πx2) sin(πx3)− sin(πx2) sin(3πx3)]

+ sin(3πx1)[sin(πx2) sin(2πx3)− sin(2πx2) sin(πx3)],

(2.10)
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Figure 2. Three noninteracting fermions: state |1, 2, 3〉 and |1, 2, 4〉

and the first eigenvalue is λ1 = 14π. The first two states for this system are
depicted in Figure 2 where the red surfaces indicate the level sets where the
eigenfunction is equal to half of its maximum value and the blue surfaces
correspond to half the minimum value.

In stationary problems with nonzero interaction potential or time-depen-
dent problems, it is no longer the case that the wave function is decompos-
able in this way and is not a single Slater determinant of one-dimensional
functions. In the more general case, however, it is reasonable to write the
wavefunction as a linear combination of Slater determinants.

The full multiparticle TDSE that we discretize and use as an equality
constraint has the form

i∂tψ(x, t) =

−∆ +

n∑
j=1

V c(xj , t) +

n∑
k>j

V i(xj , xk)

ψi(x, t), (2.11)

where −1 ≤ xj ≤ 1 and the external potential experienced by the jth particle,
V c(xj , t) = u(t)xj corresponds to a spatially-uniform electric field with time
dependent amplitude. The interaction is modeled by a smoothed Coulomb
potential

V i(xj , xk) =
q

|xj − xk|
≈ q√

(xj − xk)2 + δ2
(2.12)

with δ as a smoothing factor.

3. Numerical discretization

The wavefunction is discretized in each spatial dimension using the Legendre–
Gauss numerical integration (G-NI) discretization, which is algebraically equiv-
alent to the pseudospectral method, but leads to symmetric matrices. Conse-
quently, all variable coefficient matrices will be diagonal, which is especially
important for the interaction potential matrices which would otherwise be
full in general.
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For a single dimension, the approximation has the form

ψ(x) ≈ ψp(x) =

p∑
k=1

ψ̂k`k(x), `j(x) =

p+1∏
k=0
k 6=j

x− xk
xj − xk

, (3.1)

where j = 0, . . . , p + 1. To enforce homogeneous Dirichlet conditions, we
simply exclude `0(x) and `p+1(x). The Legendre–Gauss–Lobatto nodes are
implicitly defined by

{x0, . . . , xp+1} = {x|P ′p+1(x) = 0} ∪ {±1}, (3.2)

where Pk(x) is the kth Legendre polynomial. From the nodes and Legendre
polynomials, we also obtain the corresponding Lobatto weights

wk =
1

(p+ 1)(p+ 2)

2

[Pp+1(xk)]2
. (3.3)

Starting with a one-dimensional eigenvalue problem such as in (2.6), expand-
ing the wavefunction in the Lagrange trial basis, multiplying by a Lagrange
test function and integrating by parts gives us the weak form of the eigenvalue
problem

p∑
k=1

[(`′j , `
′
k) + (`j , V

c`k)]ψ̂k = λ

p∑
k=1

(`j , `k)ψ̂k, (3.4)

where the component matrices here are the stiffness or Laplacian matrix with
elements, K̃jk = (`′j , `

′
k), the confining potential matrix Ṽc

jk = (`j , V
c`k),

and the mass matrix M̃jk = (`j , `k). The inner products are then computed
approximately using Legendre–Gauss–Lobatto quadrature:

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi, K̃jk =

p∑
i=1

`′j(xi)`
′
k(xi)wi. (3.5)

This choice of discretization diagonalizes the mass matrix so that it contains
the quadrature weights along the diagonal M̃jk = wjδjk. Since the quadra-
ture weights are all positive, a trivial Cholesky factorization can be employed:

M̃ = R>R, Rjk =
√
wjδjk. (3.6)

Transforming the eigenbasis by R gives us the algebraically equivalent simple
eigenvalue problem in contrast to what was a generalized eigenvalue problem

[K + Vc]ϕ̂ = λϕ̂, K = R−>K̃R−1, Vc = R−>ṼcR−1. (3.7)

Although some integration accuracy is sacrificed to yield diagonal matrix ap-
proximations to the variable coefficients, it has been shown that this method
is algebraically equivalent to the standard pseudospectral method on the
Legendre–Gauss–Lobatto nodes [3], however, in this setting all of the matri-
ces are symmetric.

Following the idea of the Slater determinant formula for the decom-
posable problem, the multiparticle wave function is discretized using linear
combinations of Slater determinants of the one-dimensional Lagrange inter-
polants.
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Figure 3. Left: p = 15 and n = 2, Right: p = 15 and n = 5

The n particle trial function ϕ is a Slater determinant of L2-normalized
Lagrange polynomials and to compute the Galerkin matrices, inner products
must be computed involving trial and test functions, the latter being chosen
from the same space for symmetry. Supposing we have two Slater determi-
nants A(x) and B(x) such that

A(x) =

∣∣∣∣∣∣∣
a1(x1) · · · an(x1)

... · · ·
...

a1(xn) · · · an(xn)

∣∣∣∣∣∣∣ , B(x) =

∣∣∣∣∣∣∣
b1(x1) · · · bn(x1)

... · · ·
...

b1(xn) · · · bn(xn)

∣∣∣∣∣∣∣ , (3.8)

then the Löwden rule for Slater inner products [9] states that

〈A(x), B(x)〉 =

∣∣∣∣∣∣∣
〈a1, b1〉 · · · 〈a1, bn〉

... · · ·
...

〈an, b1〉 · · · 〈an, bn〉

∣∣∣∣∣∣∣ . (3.9)

The total discretized Laplacian or stiffness matrix is K = K1 +K2 + · · ·+Kn

where Kν
jk = 〈∂xνϕj , ∂xνϕk〉. We can write each of these components as

Kν
jk =

∣∣∣∣∣∣∣
δj1,k1 · · · δj1,kν−1 Kj1,kν δj1,kν+1 · · · δj1,kn

...
...

...
...

...
δjn,k1 · · · δjn,kν−1

Kjn,kν δjn,kν+1
· · · δjn,kn

∣∣∣∣∣∣∣ . (3.10)

Ordinarily, discretizing an n-dimensional problem with p degrees of free-
dom per dimension would result in pn grid points, however, exploiting the
antisymmetry relations of the basis functions reduces the degrees of freedom
to Np =

(
p
n

)
. All variable coefficient matrices are diagonal, and the multipar-

ticle Laplacian has a sparsity pattern that matches the adjacency matrix of
the Johnson graph with the addition of a full diagonal band. The sparsity
pattern for the Laplacian when p = 15, n = 2 and p = 15, n = 5 are displayed
in Figure 3. An efficient method of computing the Laplacian, and variable
coefficient matrices, which utilizes the combinatorial structure of the sparsity
pattern arising from this discretization to achieve optimal run-time has been
recently published [4].
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After applying the spatial discretization, we obtain a semi-discrete equa-
tion of the form

iψt = {H0 + u(t)Vc}ψ, ψ ∈ CNp . (3.11)

Typically Np is quite large and it is unnecessary to solve the state equation
using all degrees of freedom. Since we are mostly interested in transitions be-
tween low lying energy levels, the high level states will usually have extremely
low occupancy probability and can be neglected. Instead, we use a reduced
order approximation of the state by means of the eigenvalue decomposition.
Compute first Ns << Np eigenpairs (Λ,Φ) of stationary Hamiltonian so that

H0Φ = ΦΛ, Φ ∈ RNp×Ns , Λ ∈ RNs×Ns . (3.12)

Projecting the state onto the subspace spanned by the computed eigenvectors
gives the reduced state equation

iyt = {Λ + u(t)X}y, y ∈ CNs , X = Φ>VcΦ, (3.13)

which can be more compactly written as yt = iA(t)y, where A(t) = Λ +
u(t)X.

The Crank–Nicolson method(
I − iδt

2
[Ak + Ak−1]

)
yk =

(
I +

iδt

2
[Ak + Ak−1]

)
yk−1 (3.14)

is one of the more commonly used schemes to numerically integrate the
TDSE. It is important to notice, however, that it is only symplectic when
the potential is constant over a each time step. This is easily rectified by
using the modified Crank–Nicolson method [14], where the control at the
endpoints is replaced by the time averaged control over the time step. This
approximation retains second order accuracy while making the scheme sym-
plectic. Symplecticity is quite important in quantum control problems as the
cost functional can be changed arbitrarily due to numerical loss or gain in
the state equation solver otherwise.

4. Control problem formulation

Now that the state equation has been discretized in both state and time, the
optimal control problem is finite dimensional. The goal is to find the control
vector u which is defined on the grid so as to maximize the projection of the
state onto the target at the final time. This is formulated as

min
u
J(y, ȳ, u) = 1− ȳ>nPyn +

γ

2
u>Wu, (4.1)

where ȳ is the complex conjugate of y, P is the orthogonal projector onto
the target, 0 < γ � 1 is a regularization parameter, and W is the symmetric
positive matrix

Wjk =


2δt
3 + 2ε

δt if j = k
δt
6 −

ε
δt if j = k ± 1

0 otherwise

(4.2)
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such that u>Wu is a second order approximation of an H1 type of inner
product such as (u, u) + ε(u̇, u̇), where ε is a small positive parameter. Penal-
izing the derivative of the control enforces the condition that the control go
continuously to zero at t = 0 and t = T . In the numerical experiments, the
value ε = 10−3 was used.

The fully discretized Schrödinger equation (3.14) provides an equality
constraint for every time step, namely that ek(yk, yk−1, uk, uk−1) = 0 for
k = 1, . . . ,m. A Lagrange multiplier is needed for each time step to enforce
each equality constraint as well as its complex conjugate. The Lagrangian is

L(y, ȳ, u, λ, λ̄) = J(y, ȳ, u) +

m∑
k=1

λ>k ek + λ̄>k ēk. (4.3)

Taking variations with respect to each of the arguments and setting them to
zero gives the first-order optimality conditions. For compact representation,
let Bk = I − iδt

2 [Ak +Ak−1]. Then we can write the optimality system as

Bkyk = B∗kyk−1, y0 given,

Bkλk = B∗k+1λk+1, λN = Pȳm,

∇J̃(u) = Wu− δt

2
Im[ξ] = 0,

ξk = λ>kX(yk + yk−1) + λ>k+1X(yk+1 + yk).

(4.4)

We can formulate a reduced cost functional by using the fact that the state
variable is an implicit function of the control J̃(u) = J(y(u), ȳ(u), u) The
control equation in (4.4) expresses the condition that the reduced gradient

∇J̃(u) = 0.

4.1. Newton’s method

The Lagrangian is not an analytic function of the state and adjoint variables
since it also depends on their complex conjugates. Consequently, to compute
the Hessian, we use the Wirtinger calculus [8]. In the Wirtinger calculus
representation the Hessian is obtained by computing the Jacobian of the
complex conjugate of the gradient, so that the Hessian is a complex-valued
Hermitian matrix. In particular, Lab really means ∂a(∂bL)∗ which is equal to
(Lba)∗. Taking second variations gives rise to the KKT system

Lyy 0 Lyu 0 Lyλ̄
0 Lȳȳ Lȳu Lȳλ 0
Luy Luȳ Luu Luλ Luλ̄

0 Lλȳ Lλu 0 0
Lλ̄y 0 Lλ̄u 0 0



δy
δȳ
δu
δλ
δλ̄

 = −


0
0
Lu
0
0

 . (4.5)

From the KKT system, we can formally write relationship between the dif-
ferential change and state and adjoint variables due to a differential change
in the control:

δy = −L−1
λ̄y
Lȳuδu,

δλ = −L−1
ȳλ [Lȳuδu+ Lȳȳδȳ] .

(4.6)
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From this we can write δy and δλ as the solutions of forced difference equa-
tions similar to those for y and λ.

Bkδyk = B∗kδyk−1 +
iδt

2
(δuk + δuk−1)X(yk + yk−1),

Bkδλk = B∗k+1δλk−1 +
iδt

2
(δuk + δuk+1)X(λk + λk+1),

(4.7)

where the mth time step for δλ will also contain an additional term Pδym
on the right hand side.

The action of the reduced Hessian on a test vector δu is

[∇2J̃(u)]δu = Luuδu+ 2Re[Luyδy + Luλδλ]. (4.8)

The Newton search direction can now be computed by iteratively solving the
equation

[∇2J̃(u)]δu = −∇J̃(u). (4.9)

Since the cost functional is nonconvex, typically even the reduced Hessian
is indefinite and the standard conjugate gradient method will not converge.
Instead, we use the symmetric LQ (SYMMLQ) method. The computed δu
which approximately satisfies (4.9) may not be a descent direction. To handle
this possibility, define our descent direction as

p =

{
δu if δu>∇J̃(u) < 0,

−δu if δu>∇J̃(u) > 0.
(4.10)

Of course, should the Newton direction be an ascent direction, it could be
discarded in favor of the usual steepest descent direction, however, the scaling
of directions produced by solving the Hessian equation tends to be much
better. That is to say that the step lengths for sufficient decrease usually
remain order 1 instead of order 104. Consequently, in our experience, using
the sign-flipped Newton direction tends to expedite the line search.

Since the cost functional is nonconvex, a line search strategy is needed
to globalize the Newton method. Here we make the observation that the cost
functional contains two terms: the physical tracking term 1− ȳ>mPym which
is uniformly bounded between 0 and 1 and the regularization term which is
a pure quadratic, consequently once a descent direction p is computed, the
reduced cost functional J̃(u + αp) is an asymptotically quadratic function.
This means that the cost functional along the search direction can be bounded
from below by the quadratic polynomial

J̃(u+ αp) ≥ d2α
2 + d1α+ d0,

d0 = γ
2u
>Wu− J̃(u) ≤ 0,

d1 = γu>Wp,

d2 = γ
2 p
>Wp.

(4.11)

Since d0 ≤ 0, the quadratic equation d2α
2 + d1α+ d0 = 0 has real roots and

we can establish an upper bound on the largest feasible step length α that
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can still possibly reduce the cost:

αmax =

√
d2

1 − 4d0d2 − d1

2d2
. (4.12)

The local minimizer is now guaranteed to satisfy α∗ ∈ [0, αmax].

The strong Wolfe conditions that the step length α must satisfy to give
a sufficient decrease in the cost and magnitude of the directional derivative
are

J̃(u+ αp) ≤ J̃(u) + c1αp
>∇J̃(u), 0 < c1 � 1,

|p>∇J̃(u+ αp)| ≤ c2|p>∇J̃(u)|, c1 < c2 < 1.
(4.13)

In the numerical experiments, the values c1 = 10−4 and c2 = 0.5 were used.

Data: Given a descent direction p and the function
f(α) = J̃(u+ αp) and f ′(α) = p>∇J̃(u+ αp)

Compute αmax based on (4.12)
if αmax > 2 then

Evaluate f(1) and f ′(1) ;

if α = 1 satisfies (4.13) then
α∗ ← 1;

else
Construct cubic model on [0, 1] and compute its minimum
αm;
Evaluate f(αm) and f ′(αm)
if α = αm satisfies SWC then

α∗ ← αm;

else
if [0, αm] brackets a minimum then

αr ← αm;

else if [0, 1] brackets a minimum then
αr ← 1;

else
αr ← αmax;

end
a∗ ← bisect(0, ar).

end

end

else
α∗ ← bisect(0, αmax)

end

Algorithm 1: Line search algorithm
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Data: αl and αr which bracket a minimum point. L = αr − αl.
f(α) = J̃(u+ αp) and f ′(α) = p>∇J̃(u+ αp)

while L > tol do
Compute the midpoint αm = 1

2 (αl + αr) and evaluate f(αm)
and f ′(αm)
if αm satisfies (4.13) then

α∗ ← αm ;

end

if f ′(αl) < 0 and either f ′(αr) > 0 or f(αr) > f(αl) then
αr ← αm ;

else if f ′(αl) > 0 and f ′(αr) < 0 or f(αr) < f(αl) then
αr ← αm ;

else
αl ← αm ;

end
L← (αr − αl)

end

Algorithm 2: Bisection minimizer

4.2. State model reduction

Although as a general rule of thumb, the occupancy probability of the lowest
energy states are going to be greatest, we can estimate how strong the con-
trol potential couples any two states by writing down the state equation in
the interaction picture. Given stationary states φ1, φ2, . . . and corresponding
eigenvalues λ1, λ2, . . ., we can introduce a time dependent change of basis

y(t) = exp(−iΛt)z(t). (4.14)

Using this as an Ansatz in our state equation gives the new equation for the
transformed state z(t) as

ż(t) = −iu(t) exp(iΛt)X exp(−iΛt)z(t), (4.15)

where we can think of the time-dependent similarity transformed matrix X
as being an interaction matrix

X̃(t) = exp(iΛt)X exp(−iΛt), (4.16)

and the specific elements of this matrix are X̃jk exp(iωjkt) where ωjk =
λj − λk. In integral form, the transformed solution at a time t is

z(t) = z(0)− i
t∫

0

u(τ)X̃(τ)z(τ) dτ. (4.17)

Of course, u(t) and z(t) are not known in advance; however, X̃(t) is known and
integration acts as a lowpass filter. In particular, integrating the interaction
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matrix gives the elements

X̂jk(t) =

t∫
0

X̃jk(τ) dτ = X̃jk(t)
exp(iωjkt)− 1

iωjk
. (4.18)

The magnitude of the X̂jk gives a rough sense of how strongly the interac-
tion couples state |j〉 to state |k〉. Namely, the larger this element is, the more
readily we can expect a particle that starts in state |j〉 to transfer into |k〉
at some point in time. It stands to reason then, that when considering which
basis functions play the most significant role in the dynamics of wavefunc-
tion, we should consider not just the difference in eigenvalues, but also the
interaction strength.

Once the eigenfunctions are known, the basic idea of the reduced model
method is sort the eigenfunctions in decreasing importance to the dynamics,
start with only the first few, and then compute the optimal control given
that state basis. Once the optimal control is known, the state basis is then
enlarged by adding the next few most important states and repeating this
process until enlarging the state space no longer has a perceptible effect on
the cost functional.

Consider as an example, the problem of two-particle with the control
term u(t)x, after discretizing and computing the eigenfunctions, we obtain
a matrix X as in (3.13). The sparsity pattern for this matrix is shown in
the left side of Figure 4. In general, this matrix will be full and this sparsity
pattern is a consequence of special parity properties of this problem, however,
it is easier to draw the connectivity graph when some states are not directly
connected to others. The connectivity graphs shows that, while it is possible
to go from any state to any other state, state 1 is not directly connected to
state 3, so a particle must go through an intermediate state, such as 2, 5, or
7 first.

The states most strongly directly coupled to the ith state are indicated
by the largest elements of the vector

r1 = |ei + X̂ei|, (4.19)

where ei is the ith canonical vector. By extension, the states most strongly
coupled to state i in two steps will be the largest elements of the vector

r2 = |ei + X̂ei + X̂2ei|. (4.20)

Assuming that any number of intermediate states are allowed, we have the
ranking vector

r∞ =
∣∣∣ ∞∑
j=0

X̂jei

∣∣∣ = |(I − X̂)−1ei|, (4.21)

where we are guaranteed that (I − X̂)−1 exists since X̂ is skew Hermitian.
Recall that the interaction matrix in (4.18) contained an arbitrary phase shift
term of eiωjkt. Although intuitively, this term should be neglected, we did
consider the ranking the state importance both with and without this term
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Figure 4. Left: Sparsity pattern for X for two particles in
a quantum well. Right: The connectivity graph for the first
seven states.

and found that the reduced model method converges more rapidly when it is
neglected.

5. Numerical results

In the test cases, a weak interaction potential (2.12) with unit charge q = 1
and smoothing factor δ = 0.1 was used. For both the two and four particle
case, 400 uniform time steps were used and the final time was taken to be
T = 1 for the two particle case and T = 2 for the four particle case. For two
interacting particles, the order of the eigenstates as ranked by the interaction
criteria, excluding the complex exponential term, from strongest to weakest
coupling is

{1, 2, 7, 5, 3, 14, 11, 8, 4, 10, 9, 16, 12, 20, 15, 13, 6, 17, 18, 19}

when Ns = 20 in (3.12).

To compute the control, start with the first five eigenvectors (Ns =
5) with indices {1, 2, 7, 5, 4} and compute a minimizer by conducting line
searches in the Newton search directions. When a local minimizer is ob-
tained, the state space is augmented to include the first ten modes (Ns = 10)
with indices {1, 2, 7, 5, 3, 14, 11, 8, 4, 10}. The computed control is no longer a
minimizer for the state constraint as there are now allowed transitions into
higher states, which increases the objective function. Using the previously
computed optimal control from the five dimensional state space as an initial
guess, we again compute a sequence of line searches in the Newton directions
until we have a new minimizer. This process of augmenting the state space
and minimizing until augmenting the space does not noticeably increase the
objective function.
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Figure 5. Left: State transition |1, 2〉 → |1, 3〉 for two in-
teracting particles. Right: The computed optimal control for
5, 10, 15, 20, 25, 30 eigenvectors using the ranking which in-
cludes the complex exponential term.
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(b) Optimal control with refinement

Figure 6. Left: State transition |1, 2〉 → |1, 3〉 for two in-
teracting particles. Right: The computed optimal control for
Ns = 5, 10, 15, 20, 25, 30 modes (eigenvectors) without the
complex exponential term. The controls for Ns = 20 and
Ns = 30 appear to be identical.

When the complex phase factor in (4.18) is included in determining the
ranking, we see that the optimal control in Figure 5(b) changes significantly
as the number of modes Ns increases. When this phase term is excluded, as
is the case in Figure 10(b), the optimal control as a function of Ns stabilizes
rapidly. In fact, after Ns = 25 there is no significant effect on the cost by
further augmenting the space and moreover, the optimal control for Ns = 30
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Figure 7. Left: State transition |1, 2〉 → |1, 4〉 for two in-
teracting particles. Right: The computed optimal control for
Ns = 30 modes.

is not visually distinct from the optimal control for Ns = 25. This shows that
this ordering strategy is more effective at determining which eigenstates play
the most important role in the dynamics. The occupancy of the states shown
in Figures 5(a) and 10(a), is practically identical. It is important to note
that the results become effectively discretization independent after twenty
or thirty modes are used, which is a significant savings over the full space
degrees of freedom Np =

(
15
2

)
= 105.

Thirty modes is not sufficient to resolve the transition from the first
state |1, 2〉 to the third state |1, 4〉 as see in Figure 7(a) and 7(b) due to the
significantly higher energy in the control needed to make the transition, as
evidenced by the higher frequency terms in the optimal control. Instead fifty
modes were needed to adequately resolve the dynamics. More of the states in
7(a) have a significant occupation probability than was the case with 10(a).

The problem becomes more challenging as additional particles are added,
since the energy spacing of the eigenstates increases considerably. In the four
particle system, twenty Lagrange basis functions per particle were needed for
the eigenstates to be resolved. This means that before reduction the state
has dimension Np =

(
20
4

)
= 4845. However, to compute optimal controls for

the transitions between the first state |1, 2, 3, 4〉 and the second |1, 2, 3, 5〉
taking the first fifty modes was sufficient. This transition is shown in Figure
8. Exciting the system to the third state |1, 2, 3, 6〉 proved quite difficult as
at the final time there was only a 97% probability of finding the particles in
the desired state. We also see that the H1 norm of the control is becoming
quite large and to resolve this problem finer grids will be needed.

In Figure 10, the reduction of the cost functional and of the L2 norm
of the gradient is shown for the problem of two interacting fermions making
the transition from the state |1, 2〉 to the state |1, 3〉. The globalized Newton
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Figure 8. Left: State transition |1, 2, 3, 4〉 → |1, 2, 3, 5〉 for
four interacting particles.Right: The computed optimal con-
trol for Ns = 50 modes.
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Figure 9. Left: State transition |1, 2, 3, 4〉 → |1, 2, 3, 6〉 for
four interacting particles.Right: The computed optimal con-
trol for Ns = 50 modes.

method is started with a state space of dimension Ns = 5, and after 100 itera-
tions, the state space is repeatedly augmented by more sorted eigenfunctions
until further augmentation does not appreciably change the cost functional.

After numerous tests with differing interaction terms, more particles,
initial and final states, state space dimension, and time scale, there does not
appear to be any completely typical pattern with respect to how often the
unit step length of the Newton method yields sufficient decrease and when a
line search is needed. It can be said that generally, parameters which make the
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Figure 10. Left: Cost functional value reduction for the
state transition |1, 2〉 → |1, 3〉 for two interacting particles.
Right: Reduction of L2-norm of the gradient.

minimization problem harder are those which increase the energy separation
between initial and final states, and this tends to require more line searches.

6. Conclusion

We have presented an efficient discretization method and optimization method
for controlling energy state transitions for multiple fermions. It was observed
that the computational effort of the problem can be reduced by projecting
the state onto a suitable reduced basis, which is then augmented as needed
to adequately resolve the dynamics. Since optimal control and corresponding
state are smooth functions, in future work, higher order symplectic methods
will be used to discretize in time so that the number of degrees of freedom in
the optimization problem of computing the optimal control can be reduced.
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