Skip to main content

Implications of Axiomatic Consensus Properties

  • Conference paper
  • First Online:
Algorithms from and for Nature and Life

Abstract

Since Arrow’s celebrated impossibility theorem, axiomatic consensus theory has been extensively studied. Here we are interested in implications between axiomatic properties and consensus functions on a profile of hierarchies. Such implications are systematically investigated using Formal Concept Analysis. All possible consensus functions are automatically generated on a set of hierarchies derived from a fixed set of taxa. The list of implications is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, E. N., III. (1972). Consensus techniques and the comparison of taxonomic trees. Systematic Zoology, 21, 390–397.

    Article  Google Scholar 

  • Adams, E. N., III. (1986). N-trees as nestings: complexity, similarity, and consensus. Journal of Classification, 3, 299–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Arrow, K. J. (1951). Social choice and individual values. New York: Wiley.

    MATH  Google Scholar 

  • Bandelt, H.-J., & Dress, A. (1989). Weak hierarchies associated with similarity measures: an additive clustering technique. Bulletin of Mathematical Biology, 51, 133–166.

    MathSciNet  MATH  Google Scholar 

  • Barbut, M., & Monjardet, B. (1970). Ordres et classification: algèbre et combinatoire (tome II). Paris: Hachette.

    Google Scholar 

  • Barthélemy, J.-P., McMorris, F. R., & Powers, R. C. (1992). Dictatorial consensus functions on n-trees. Mathematical Social Sciences, 25, 59–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertrand, P. (2000). Set systems and dissimilarities. European Journal of Combinatorics, 21, 727–743.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertrand, P., & Diday, E. (1985). A visual representation of compatibility between an order and a dissimilarity index: the pyramids. Computer Statistics Quarterly, 2, 31–44.

    MATH  Google Scholar 

  • Birkhoff, G. (1967). Lattice theory (3rd ed.). Providence: American Mathematical Society.

    MATH  Google Scholar 

  • Bremer, K. (1990). Combinable component consensus. Cladistics, 6, 369–372.

    Article  Google Scholar 

  • Bryant, D. (2003). A classification of consensus methods for phylogenetics. In M. Janowitz, F. J. Lapointe, F. McMorris, B. Mirkin, & F. Roberts (Eds.), Bioconsensus, DIMACS (pp. 163–184). Providence: DIMACS-AMS.

    Google Scholar 

  • Colonius, H., & Schulze, H.-H. (1981). Tree structure for proximity Data. British Journal of Mathematical and Statistical Psychology, 34, 167–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Day, W. H. E., & McMorris, F. R. (2003). Axiomatic consensus theory in group choice and biomathematics. Philadelphia: Siam.

    Book  MATH  Google Scholar 

  • Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Degnan, J. H., DeGiorgio, M., Bryant, D., & Rosenberg, N. A. (2009). Properties of consensus methods for inferring species trees from gene trees. Systems Biology, 58, 35–54.

    Article  Google Scholar 

  • Dong, J., Fernández-Baca, D., McMorris, F. R., & Powers, R. C. (2011). An axiomatic study of majority-rule ( + ) and associated consensus functions on hierarchies. Discrete Applied Mathematics, 159, 2038–2044.

    Article  MathSciNet  MATH  Google Scholar 

  • Felsenstein, J. (1978). The number of evolutionary trees. Systematic Zoology, 27, 27–33.

    Article  Google Scholar 

  • Ganter, B., & Wille, R. (1996). Formal concept analysis: mathematical foundations. Heidelberg: Springer.

    MATH  Google Scholar 

  • Guigues, J.-L., & Duquenne, V. (1986). Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines, 95, 5–18.

    MathSciNet  Google Scholar 

  • Hudry, O., & Monjardet, B. (2010). Consensus theories. An oriented survey. Mathématiques et Sciences Humaines, 190, 139–167.

    Google Scholar 

  • Margush, T., & McMorris, F. R. (1981). Consensus n-trees. Bulletin of Mathematical Biology, 43, 239–244.

    MathSciNet  MATH  Google Scholar 

  • May, K. O. (1952). A set of independent necessary and sufficient conditions for simple majority decision. Econometrica, 20, 680–684.

    Article  MATH  Google Scholar 

  • Nelson, G. (1979). Cladistic analysis and synthesis: principles and definitions, with a historical note on adanson’s famille des plantes (1763–1764). Systematic Zoology, 28, 1–21.

    Article  Google Scholar 

  • Neumann, D. A. (1983). Faithful consensus methods for n-trees. Mathematical Biosciences, 63, 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Page, R. D. M. (1990). Tracks and trees in the antipodes: a reply to humphries and seberg. Systematic Zoology, 39, 288–299.

    Article  Google Scholar 

  • Phillips, C., & Warnow, T. J. (1996). The aymmetric median tree – a new model for building consensus trees. Discrete Applied Mathematics, 71, 311–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Powers, R. C., & White, J. M. (2008). Wilson’s theorem for consensus functions on hierarchies. Discrete Applied Mathematics, 156, 1321–1329.

    Article  MathSciNet  MATH  Google Scholar 

  • Semple, M., & Steel, C. (2000). A supertree method for rooted trees. Discrete Applied Mathematics, 105, 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Yevtushenko, S. A. (2000). System of data analysis “Concept Explorer”. In Proceedings of the 7th national conference on Artificial Intelligence KII-2000, Russia, (pp. 127–134).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their useful comments and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Domenach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Domenach, F., Tayari, A. (2013). Implications of Axiomatic Consensus Properties. In: Lausen, B., Van den Poel, D., Ultsch, A. (eds) Algorithms from and for Nature and Life. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-00035-0_5

Download citation

Publish with us

Policies and ethics