Skip to main content

Grasping with Your Face

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

BCI (Brain Computer Interface) technology shows great promise in the field of assistive robotics. In particular, severely impaired individuals lacking the use of their hands and arms would benefit greatly from a robotic grasping system that can be controlled by a simple and intuitive BCI. In this paper we describe an end-to-end robotic grasping system that is controlled by only four classified facial EMG signals resulting in robust and stable grasps. A front end vision system is used to identify and register objects to be grasped against a database of models. Once the model is aligned, it can be used in a real-time grasp planning simulator that is controlled through a non-invasive and inexpensive BCI interface in both discrete and continuous modes. The user can control the approach direction through the BCI interface, and can also assist the planner in choosing the best grasp. Once the grasp is planned, a robotic hand/arm system can execute the grasp. We show results in using this system to pick up a variety of objects in real-time, from a number of different approach directions, using facial BCI signals exclusively. We believe this system is a working prototype for a fully automated assistive grasping system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artemiadis, P.K., Kyriakopoulos, K.J.: A switching regime model for the EMG-based control of a robot arm. IEEE Transactions on Systems, Man, and Cybernetics 41(1), 53–63 (2011)

    Article  Google Scholar 

  2. Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.N.: Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering 5(2), 214–220 (2008)

    Article  Google Scholar 

  3. Berenson, D., Srinivasa, S.S., Kuffner, J.: Task Space Regions: A framework for pose-constrained manipulation planning. The International Journal of Robotics Research (2011)

    Google Scholar 

  4. Castellini, C., van der Smagt, P.: Surface EMG in advanced hand prosthetics. Biological Cybernetics 100(1), 35–47 (2009)

    Article  Google Scholar 

  5. Ciocarlie, M.T., Allen, P.K.: Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research 28(7), 851–867 (2009)

    Article  Google Scholar 

  6. Cipriani, C., Zaccone, F., Micera, S., Carrozza, M.: On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User Prosthesis Interaction. IEEE Transactions on Robotics 24(1), 170–184 (2008)

    Article  Google Scholar 

  7. Goldfeder, C., Ciocarlie, M., Peretzman, J., Dang, H., Allen, P.K.: Data-driven grasping with partial sensor data. In: IROS 2009: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1278–1283. IEEE Press, Piscataway (2009)

    Chapter  Google Scholar 

  8. Gomez-Gil, J., San-Jose-Gonzalez, I., Nicolas-Alonso, L.F., Alonso-Garcia, S.: Steering a Tractor by Means of an EMG-Based Human-Machine Interface. Sensors 11(7), 7110–7126 (2011)

    Article  Google Scholar 

  9. Hazrati, M.K., Erfanian, A.: An on-line BCI for control of hand grasp sequence and holding using adaptive probabilistic neural network. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1009–1012 (2008)

    Google Scholar 

  10. Ho, N.S.K., Tong, K.Y., Hu, X.L., Fung, K.L., Wei, X.J., Rong, W., Susanto, E.A.: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–5. IEEE (2011)

    Google Scholar 

  11. Horki, P., Solis-Escalante, T., Neuper, C., Müller-Putz, G.: Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Medical & Biological Engineering & Computing 49(5), 567–577 (2011)

    Article  Google Scholar 

  12. Bryan, M., Thomas, V., Nicoll, G., Chang, L., Smith, J., Rao, R.: What You Think is What You Get: Brain-Controlled Interfacing for the PR2. Tech. rep., Iros 2011: The PR2 Workshop, San Francisco (2011)

    Google Scholar 

  13. Matrone, G., Cipriani, C., Carrozza, M.C., Magenes, G.: Two-channel real-time EMG control of a dexterous hand prosthesis. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering, pp. 554–557 (2011)

    Google Scholar 

  14. Miller, A.T., Allen, P.K.: Graspit!: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine 11, 110–122 (2004)

    Article  Google Scholar 

  15. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: EEG-based neuroprosthesis control: a step towards clinical practice. Neuroscience Letters 382(1-2), 169–174 (2005)

    Article  Google Scholar 

  16. Papazov, C., Burschka, D.: An efficient ransac for 3d object recognition in noisy and occluded scenes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Postelnicu, C.C., Talaba, D., Toma, M.I.: Controlling a Robotic Arm by Brainwaves and Eye. IFIP International Federation For Information Processing, pp. 157–164 (2011)

    Google Scholar 

  18. Ranky, G.N., Adamovich, S.: Analysis of a commercial EEG device for the control of a robot arm. In: Proc. IEEE Northeast Bioengineering Conference (NEBEC), New York, NY, pp. 1–2 (2010)

    Google Scholar 

  19. Royer, A.S., Rose, M.L., He, B.: Goal selection versus process control while learning to use a brain-computer interface. Journal of Neural Engineering 8(3), 036,012 (2011)

    Google Scholar 

  20. Sagawa, K., Kimura, O.: Control of robot manipulator using EMG generated from face. In: ICMIT 2005: Control Systems and Robotics, vol. 6042, pp. 604,233-604,233–6 (2005)

    Google Scholar 

  21. Santello, M., Flanders, M., Soechting, J.F.: Patterns of hand motion during grasping and the influence of sensory guidance. The Journal of Neuroscience 22(4), 1426–1435 (2002)

    Google Scholar 

  22. Scherer, R., Friedrich, E.C.V., Allison, B., Pröll, M., Chung, M., Cheung, W., Rao, R.P.N., Neuper, C.: Non-invasive brain-computer interfaces: Enhanced gaming and robotic control. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 362–369. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Shenoy, P., Miller, K.J., Crawford, B., Rao, R.N.: Online electromyographic control of a robotic prosthesis. IEEE Transactions on Bio-medical Engineering 55(3), 1128–1135 (2008)

    Article  Google Scholar 

  24. Tavella, M., Leeb, R., Rupp, R., Millan, J.D.R.: Towards natural non-invasive hand neuroprostheses for daily living. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 126–129 (2010)

    Google Scholar 

  25. Tsoli, A., Jenkins, O.C.: 2d subspaces for user-driven robot grasping. In: RSS Workshop on Robot Manipulation: Sensing and Adapting to the Real World, Atlanta, GA (2007)

    Google Scholar 

  26. Vogel, J., Haddadin, S., Simeral, J.D., Stavisky, S.D., Bacher, D., Hochberg, L.R., Donoghue, J.P., van der Smagt, P.: Continuous Control of the DLR Light-weight Robot III by a human with tetraplegia using the BrainGate2 Neural Interface System. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. STAR, vol. 79, pp. 125–136. Springer, Heidelberg (2012)

    Google Scholar 

  27. Waytowich, N., Henderson, A., Krusienski, D., Cox, D.: Robot application of a brain computer interface to staubli TX40 robots - early stages. In: World Automation Congress (WAC), pp. 1–6 (2010)

    Google Scholar 

  28. Wołczowski, A., Kurzyński, M.: Human-machine interface in bioprosthesis control using EMG signal classification. Expert Systems 27(1), 53–70 (2010)

    Article  Google Scholar 

  29. Yang, D., Zhao, J., Gu, Y., Jiang, L., Liu, H.: EMG pattern recognition and grasping force estimation: Improvement to the myocontrol of multi-DOF prosthetic hands. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 516–521. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weisz, J., Shababo, B., Dong, L., Allen, P.K. (2013). Grasping with Your Face. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_30

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics