Skip to main content

Parallelization of the Fast Multipole Method for Molecular Dynamics Simulations on Multicore Computers

  • Conference paper
Advanced Computational Methods for Knowledge Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 479))

Abstract

We have parallelized the fast multipole method (FMM) on multicore computers using OpenMP programming model. The FMM is the one of the fastest approximate force calculation algorithms for molecular dynamics simulations. Its computational complexity is linear. Parallelization of FMM on multicore computers using OpenMP has been reported since the multicore processors become increasingly popular. However the number of those FMM implementations is not large. The main reason is that those FMM implementations have moderate or low parallel efficiency for high expansion orders due to sophisticated formulae of the FMM. In addition, parallel efficiency of those implementations for high expansion orders rapidly drops to 40% or lower as the number of threads increases to 8 or higher. Our FMM implementation on multicore computers using a combination approach as well as a newly developed formula and a computational procedure (A2P) solved the above issues. Test results of our FMM implementation on a multicore computer show that our parallel efficiency with 8 threads is at least 70% for moderate and high expansion orders pā€‰=ā€‰4,5,6,7. Moreover, the parallel efficiency for moderate and high expansion orders gradually drops from 96% to 70% as the number of threads increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haile, M.: Molecular dynamics simulation: Elementary methods. Wiley-Interscience (1997)

    Google ScholarĀ 

  2. Rappaport, D.C.: The art of molecular dynamics simulation, 2nd edn. Cambridge University Press (2004)

    Google ScholarĀ 

  3. Satou, A.: Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics. Elsevier (2010)

    Google ScholarĀ 

  4. Griebel, M.: Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Springer (2010)

    Google ScholarĀ 

  5. Barnes, J.E., Hut, P.: A hierarchical O(NlogN) force calculation algorithm. NatureĀ 324, 446ā€“449 (1986)

    ArticleĀ  Google ScholarĀ 

  6. Barnes, J.E.: A modified tree code: Donā€™t laugh, it runs. Journal of Computational PhysicsĀ 87, 161ā€“170 (1990)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of Computational PhysicsĀ 73, 325ā€“348 (1987)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta NumericaĀ 6, 229ā€“269 (1997)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  9. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. Journal of computational physicsĀ 155, 468ā€“498 (1999)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Lupo, J.A., Wang, Z.Q., McKenney, A.M., Pachter, R., Mattson, W.: A large scale molecular dynamics simulation code using the fast multipole algorithm (FMD): performance and application. Journal of Molecular Graphics and ModellingĀ 21, 89ā€“99 (2002)

    ArticleĀ  Google ScholarĀ 

  11. Gumerov, N.A., Duraiswami, R., Zotkin, D.N., Fantalgo, M.D.: Fast Multipole Accelerated Boundary Elements for Numerical Computation of the Head Related Transfer Function. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007 (2007)

    Google ScholarĀ 

  12. Gumerov, N.A., Duraiswami, R.: Efficient FMM accelerated vortex methods in three dimensions via the Lamb-Helmholtz decomposition. Submitted to Journal of Computational Physics, arXiv:1201.5430

    Google ScholarĀ 

  13. Pan, X.M., Pi, W.C., Sheng, X.Q.: On OpenMP parallelization of the multilevel fast multipole algorithm. Progress in Electromagnetics ResearchĀ 112, 199ā€“213 (2011)

    Google ScholarĀ 

  14. Yokota, R., Barba, L.: A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems, arXiv:1106.2176v2 [cs.NA] (2011)

    Google ScholarĀ 

  15. http://www.openmp.org

  16. Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM Journal on Scientific and Statistical ComputingĀ 13(4), 923ā€“947 (1992)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  17. Hardin, R.H., Sloane, N.J.A.: McLarenā€™s improved snub cube and other new spherical design in three dimensions. Discrete and Computational GeometryĀ 15, 429ā€“441 (1996)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Makino, J.: Yet another fast multipole method without multipoles - pseudoparticle multipole method. Journal of Computational PhysicsĀ 151, 910ā€“920 (1999)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. Kawai, J.M.: Pseudoparticle multipole method: A simple method to implement a high-accuracy treecode. The Astrophysical JournalĀ 550, L143ā€“L146 (2001)

    Google ScholarĀ 

  20. Chau, N.H., Kawai, A., Ebisuzaki, T.: Implementation of fast multipole algorithm on special-purpose computer MDGRAPE-2. In: Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics, SCI 2002, Orlando, Colorado, USA, July 14-18, pp. 477ā€“481 (2002)

    Google ScholarĀ 

  21. Chau, N.H., Kawai, A., Ebisuzaki, T.: Acceleration of fast multipole method using special-purpose computer GRAPE. International Journal of High Performance Computing ApplicationsĀ 22(2), 194ā€“205 (2008)

    ArticleĀ  Google ScholarĀ 

  22. Chau, N.H.: A new formulation for fast calculation of far field force in molecular dynamics simulations. Journal of Science (Mathematics-Physics)Ā 23(1), 1ā€“8 (2007)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Hai Chau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Chau, N.H. (2013). Parallelization of the Fast Multipole Method for Molecular Dynamics Simulations on Multicore Computers. In: Nguyen, N., van Do, T., le Thi, H. (eds) Advanced Computational Methods for Knowledge Engineering. Studies in Computational Intelligence, vol 479. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00293-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00293-4_16

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00292-7

  • Online ISBN: 978-3-319-00293-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics