Skip to main content

Estimation of Solution of Discrete Linear Time-Varying System

  • Chapter
Vision Based Systemsfor UAV Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 481))

  • 3511 Accesses

Abstract

In this paper we propose the upper, and in some cases, lower bounds for norm of solution of linear discrete time-varying system by coefficients matrices. We show that our estimates have two merits. Firstly, we do not need to know eigenvalues or spectral norm of matrices because we can simply calculate it by matrix coefficients. Secondly, our bounds are also valid in case of singular matrices. Moreover, in the paper we present an upper estimate for stationary system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adrianova, L.Y.: Introduction to Linear Systems of Differential Equations, vol. 146. AMS Bookstore (1995)

    Google Scholar 

  2. Arnold, L., Crauel, H., Eckmann, J.P. (eds.): Lyapunov Exponents. Proceedings of a Conference, held in Oberwolfach, May 28-June 2. Lecture Notes in Mathematics, vol. 1486. Springer, Berlin (1991)

    MATH  Google Scholar 

  3. Awad, L.R., El-Kholy, E.M., El-Bendary, S.: On the Estimation of Solutions for Some Linear Systems of Differential Equations. Acta Mathematica Sinica, New Series 14(1), 41–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira, L., Pesin, Y.: Lyapunov exponents and Smooth Ergodic Theory. Univ. Lecture Ser., vol, 23. Amer. Math Soc., Providence (2002)

    Google Scholar 

  5. Li, C., Chen, G.: Estimating the Lyapunov exponents of discrete systems. Chaos 14(2), 343–346 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, C., Xia, X.: On the bound of the Lyapunov exponents for continuous systems. Chaos 14(3), 557–561 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czornik, A., Jurgas, P.: Set of possible values ofmaximal Lyapunov exponents of discrete time-varying linear system. Automatica 44(2), 580–583 (2008)

    Article  MathSciNet  Google Scholar 

  8. Czornik, A., Nawrat, A.: On new estimates for Lyapunov exponents of discrete time-varying linear systems. Automatica 46(4), 775–778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Czornik, A.: Bounds for characteristic exponents of discrete linear time-varying systems. Journal of the Franklin Institute-Engineering and Applied Mathematics 347(2), 502–507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czornik, A., Mokry, P., Niezabitowski, M.: On a Continuity of characteristic exponents of linear discrete time-varying systems. Archives of Control Sciences 22(LVIII), 17–27 (2012)

    Google Scholar 

  11. Czornik, A., Niezabitowski, M.: O parametrycznej zale żności wykładników Lapunowa dyskretnych układów liniowych. In: XVIII Krajowa Konferencja Automatyzacji Procesów Dyskretnych w Zakopanem September 19-22, Analiza procesów dyskretnych, Tom I, pp. 41–48 (2012)

    Google Scholar 

  12. Czornik, A., Niezabitowski, M.: Lyapunov Exponents for Systems with Unbounded Coefficients. - To appear in Dynamical Systems: An International Journal (2012)

    Google Scholar 

  13. Czornik, A., Nawrat, A., Niezabitowski, M.: On the Lyapunov exponents of a class of the second order discrete time linear systems with bounded perturbations. - To appear in Dynamical Systems: An International Journal (2012)

    Google Scholar 

  14. Key, E.S.: Lower bounds for the maximal Lyapunov exponent. Journal of Theoretical Probability 3(3), 477–487 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leonov, G.A.: Strange Attractors and Classical Stability Theory. Nonlinear Dynamics and Systems Theory 8(1), 49–96 (2008)

    MathSciNet  Google Scholar 

  16. Leonov, G.A.: Strange Attractors and Classical Stability Theory. St. Petersburg University Press (2009)

    Google Scholar 

  17. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw Hill, Boston (1987)

    MATH  Google Scholar 

  18. Smith, R.A.: Bounds for the characteristic exponents of linear systems. Proc. Camb. Phil. Soc. 61, 889–894 (1965)

    Article  MATH  Google Scholar 

  19. Topór-Kamiński, T., Żurkowski, R., Grygiel, M.: Selected methods of measuring the delay in data transmission systems with wireless network interfaces. Acta Phys. Pol. A 120(4), 748–754 (2011)

    Google Scholar 

  20. Topór-Kamiñski, T., Krupanek, B., Homa, J.: Delays models of measurement and control data transmission network. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems of National Border Security. SCI, vol. 440, pp. 257–278. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Czornik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Czornik, A., Nawrat, A., Niezabitowski, M. (2013). Estimation of Solution of Discrete Linear Time-Varying System. In: Nawrat, A., Kuś, Z. (eds) Vision Based Systemsfor UAV Applications. Studies in Computational Intelligence, vol 481. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00369-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00369-6_20

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00368-9

  • Online ISBN: 978-3-319-00369-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics