Abstract
The solution of the camera head control problem was presented in the paper. The main goal of developed control algorithm is the object tracking in rapid disturbance conditions. The changes of the helicopter position and orientation during the time of disturbance result in losing tracked object from the field of view. Due to this fact the helicopter control system uses not only the visual information. The essence of the proposed solution is to compute the object position only in such time intervals when the object is in the center of the image. It allows the camera head regulators to compensate change of the camera position and set the camera towards the object. The proposed solution comprises of turning the camera head towards the trucked object in horizontal and vertical planes. The appropriate angles were computed on the basis of rangefinder data (distance between the camera and the object) and GPS and IMU data (the camera position and orientation). Furthermore, examples of the situation when the distortion changes the helicopter position in horizontal and vertical plane were presented in the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davies, D., Palmer, P.L., Mirmehdi, M.: Detection and tracking of very small low contrast objects. In: Proceedings of the 9th British Machine Vision Conference (September 1998)
Zhang, S., Karim, M.A.: Automatic target tracking for video annotation. Op. Eng. 43, 1867–1873 (2004)
Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models and Image Process. 53, 231–239 (1991)
Chesnaud, C., Refegier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Patt. Anal. Mach. Intell. 21, 1145–1157 (1999)
Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Boston (2004)
Sharp, C., Shakernia, O., Sastry, S.: A Vision System for Landing an Unmanned Aerial Vehicle. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1720–1727. IEEE, Los Alamitos (2001)
Casbeer, D., Li, S., Beard, R., Mehra, R., McLain, T.: Forest Fire Monitoring With Multiple Small UAVs, Porland, OR (April 2005)
Kuś, Z., Fraś, S.: Helicopter control algorithms from the set orientation to the set geographical Location. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 3–14. Springer, Heidelberg (2013)
Nawrat, A.: Modelowanie i sterowanie bezzałogowych obiektów latających. Wydawnictwo Politechniki Śląskiej, Gliwice (2009)
Valavanis, K.P. (ed.): Advances In Unmanned Aerial Vehicles. Springer (2007)
Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-Flying Machines. Springer (2005)
Padfield, G.D.: Helicopter Flight Dynamics. Backwell Science Ltd. (1996)
Manerowski, J.: Identyfikacja modeli dynamiki ruchu sterowanych obiektów latających, WN ASKON, Warszawa (1999)
Kearney, J.K., Thompson, W.B.: Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 229–243 (1987)
Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)
Barman, H., Haglund, L., Knutsson, H., Granlund, G.: Estimation of velocity, acceleration, and disparity in time sequences. In: Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 44–51 (1991)
Bascle, B., Bouthemy, E., Deriche, N., Meyer, E.: Tracking complex primitives in an image sequence. In: Proc. 12th International Conference on Pattern Recognition, Jerusalem, pp. 426–431 (1994)
Butt, E.J., Yen, C., Xu, X.: Local correlation measures for motion analysis: A comparative study. In: Pattern Recognition and Image Processing Conference, Las Vegas, pp. 269–274 (1982)
Butt, E.J., Bergen, J.R., Hingorani, R., Kolczynski, R., Lee, W.A., Leung, A., Lubin, J., Shvayster, H.: Object tracking with a moving camera. In: Proc. IEEE Workshop on Visual Motion, Irving, pp. 2–12 (1989)
Buxton, B.E., Buxton, H.: Computation of optical flow from the motion of edges features in image sequences. Image and Vision Computing 2(2), 59–75 (1984)
Campani, M., Verri, A.: Computing optical flow from an overconstrained system of linear algebraic equations. In: Proc. 3rd International Conference on Computer Vision, Osaka, pp. 22–26 (1990)
Campani, M., Verri, A.: Motion analysis from firstorder properties of optical flow. CVGIP: Image Understanding 56(1), 90–107 (1992)
Carlsson, S.: Information in the geometric structure of retinal flow field. In: Proc. 2nd International Conference on Computer Vision, pp. 629–633 (1988)
Gessing, R.: Control Fundamentals. Silesian University of Technology, Gliwice (2004)
Kuś, Z.: Object tracking in a picture during rapid camera movements
Babiarz, A., Jaskot, K., Koralewicz, P.: The control system for autonomous mobile platform. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 15–28. Springer, Heidelberg (2013)
Babiarz, A., Jaskot, K.: The concept of collision-free path planning of UAV objects. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 81–94. Springer, Heidelberg (2013)
Jaskot, K., Babiarz, A.: The inertial measurement unit for detection of position. Przegląd Elektrotechniczny 86, 323–333 (2010)
Grygiel, R., Pacholczyk, M.: Prototyping of control algorithms in matlab/Simulink. In: 14th World Multi-Conference on Systemics, Cybernetics and Informatis, WMSCI 2010, vol. 2, pp. 141–145 (2010)
Skorkowski, A., Topor-Kaminski, T.: Analysis of EGNOS-augmented receiver positioning accuracy. Acta Physica Polonica A 122(5), 821–824 (2012)
Daniec, K., Jedrasiak, K., Koteras, R., Nawrat, A.: Embedded micro inertial navigation system. Applied Mechanics and Materials 249-250, 1234–1246 (2013)
Iwaneczko, P., Jędrasiak, K., Daniec, K., Nawrat, A.: A prototype of unmanned aerial vehicle for image acquisition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 87–94. Springer, Heidelberg (2012)
Jędrasiak, K., Nawrat, A., Wydmańska, K.: SETh-link the distributed management system for unmanned mobile vehicles. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 247–256. Springer, Heidelberg (2013)
Nawrat, N., Kozak, K., Daniec, K., Koteras, R.: Differential navigation for UAV platforms with mobile reference station. In: Proceedings of the International Conference on Applied Computer Science, pp. 465–471 (2010)
Kozak, K., Koteras, R., Daniec, K., Nawrat, A.: qB-Distributed real time control system in UAV design. In: Proceedings of the 13th WSEAS International Conference on Systems, pp. 185–189 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kuś, Z., Nawrat, A. (2013). Object Tracking for Rapid Camera Movements in 3D Space. In: Nawrat, A., Kuś, Z. (eds) Vision Based Systemsfor UAV Applications. Studies in Computational Intelligence, vol 481. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00369-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-00369-6_4
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-00368-9
Online ISBN: 978-3-319-00369-6
eBook Packages: EngineeringEngineering (R0)