Skip to main content

Object Tracking for Rapid Camera Movements in 3D Space

  • Chapter
Vision Based Systemsfor UAV Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 481))

Abstract

The solution of the camera head control problem was presented in the paper. The main goal of developed control algorithm is the object tracking in rapid disturbance conditions. The changes of the helicopter position and orientation during the time of disturbance result in losing tracked object from the field of view. Due to this fact the helicopter control system uses not only the visual information. The essence of the proposed solution is to compute the object position only in such time intervals when the object is in the center of the image. It allows the camera head regulators to compensate change of the camera position and set the camera towards the object. The proposed solution comprises of turning the camera head towards the trucked object in horizontal and vertical planes. The appropriate angles were computed on the basis of rangefinder data (distance between the camera and the object) and GPS and IMU data (the camera position and orientation). Furthermore, examples of the situation when the distortion changes the helicopter position in horizontal and vertical plane were presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davies, D., Palmer, P.L., Mirmehdi, M.: Detection and tracking of very small low contrast objects. In: Proceedings of the 9th British Machine Vision Conference (September 1998)

    Google Scholar 

  2. Zhang, S., Karim, M.A.: Automatic target tracking for video annotation. Op. Eng. 43, 1867–1873 (2004)

    Article  Google Scholar 

  3. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models and Image Process. 53, 231–239 (1991)

    Article  Google Scholar 

  4. Chesnaud, C., Refegier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Patt. Anal. Mach. Intell. 21, 1145–1157 (1999)

    Article  Google Scholar 

  5. Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Boston (2004)

    MATH  Google Scholar 

  6. Sharp, C., Shakernia, O., Sastry, S.: A Vision System for Landing an Unmanned Aerial Vehicle. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1720–1727. IEEE, Los Alamitos (2001)

    Google Scholar 

  7. Casbeer, D., Li, S., Beard, R., Mehra, R., McLain, T.: Forest Fire Monitoring With Multiple Small UAVs, Porland, OR (April 2005)

    Google Scholar 

  8. Kuś, Z., Fraś, S.: Helicopter control algorithms from the set orientation to the set geographical Location. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 3–14. Springer, Heidelberg (2013)

    Google Scholar 

  9. Nawrat, A.: Modelowanie i sterowanie bezzałogowych obiektów latających. Wydawnictwo Politechniki Śląskiej, Gliwice (2009)

    Google Scholar 

  10. Valavanis, K.P. (ed.): Advances In Unmanned Aerial Vehicles. Springer (2007)

    Google Scholar 

  11. Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-Flying Machines. Springer (2005)

    Google Scholar 

  12. Padfield, G.D.: Helicopter Flight Dynamics. Backwell Science Ltd. (1996)

    Google Scholar 

  13. Manerowski, J.: Identyfikacja modeli dynamiki ruchu sterowanych obiektów latających, WN ASKON, Warszawa (1999)

    Google Scholar 

  14. Kearney, J.K., Thompson, W.B.: Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 229–243 (1987)

    Article  Google Scholar 

  15. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)

    Article  Google Scholar 

  16. Barman, H., Haglund, L., Knutsson, H., Granlund, G.: Estimation of velocity, acceleration, and disparity in time sequences. In: Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 44–51 (1991)

    Google Scholar 

  17. Bascle, B., Bouthemy, E., Deriche, N., Meyer, E.: Tracking complex primitives in an image sequence. In: Proc. 12th International Conference on Pattern Recognition, Jerusalem, pp. 426–431 (1994)

    Google Scholar 

  18. Butt, E.J., Yen, C., Xu, X.: Local correlation measures for motion analysis: A comparative study. In: Pattern Recognition and Image Processing Conference, Las Vegas, pp. 269–274 (1982)

    Google Scholar 

  19. Butt, E.J., Bergen, J.R., Hingorani, R., Kolczynski, R., Lee, W.A., Leung, A., Lubin, J., Shvayster, H.: Object tracking with a moving camera. In: Proc. IEEE Workshop on Visual Motion, Irving, pp. 2–12 (1989)

    Google Scholar 

  20. Buxton, B.E., Buxton, H.: Computation of optical flow from the motion of edges features in image sequences. Image and Vision Computing 2(2), 59–75 (1984)

    Article  Google Scholar 

  21. Campani, M., Verri, A.: Computing optical flow from an overconstrained system of linear algebraic equations. In: Proc. 3rd International Conference on Computer Vision, Osaka, pp. 22–26 (1990)

    Google Scholar 

  22. Campani, M., Verri, A.: Motion analysis from firstorder properties of optical flow. CVGIP: Image Understanding 56(1), 90–107 (1992)

    Article  MATH  Google Scholar 

  23. Carlsson, S.: Information in the geometric structure of retinal flow field. In: Proc. 2nd International Conference on Computer Vision, pp. 629–633 (1988)

    Google Scholar 

  24. Gessing, R.: Control Fundamentals. Silesian University of Technology, Gliwice (2004)

    Google Scholar 

  25. Kuś, Z.: Object tracking in a picture during rapid camera movements

    Google Scholar 

  26. Babiarz, A., Jaskot, K., Koralewicz, P.: The control system for autonomous mobile platform. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 15–28. Springer, Heidelberg (2013)

    Google Scholar 

  27. Babiarz, A., Jaskot, K.: The concept of collision-free path planning of UAV objects. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 81–94. Springer, Heidelberg (2013)

    Google Scholar 

  28. Jaskot, K., Babiarz, A.: The inertial measurement unit for detection of position. Przegląd Elektrotechniczny 86, 323–333 (2010)

    Google Scholar 

  29. Grygiel, R., Pacholczyk, M.: Prototyping of control algorithms in matlab/Simulink. In: 14th World Multi-Conference on Systemics, Cybernetics and Informatis, WMSCI 2010, vol. 2, pp. 141–145 (2010)

    Google Scholar 

  30. Skorkowski, A., Topor-Kaminski, T.: Analysis of EGNOS-augmented receiver positioning accuracy. Acta Physica Polonica A 122(5), 821–824 (2012)

    Google Scholar 

  31. Daniec, K., Jedrasiak, K., Koteras, R., Nawrat, A.: Embedded micro inertial navigation system. Applied Mechanics and Materials 249-250, 1234–1246 (2013)

    Article  Google Scholar 

  32. Iwaneczko, P., Jędrasiak, K., Daniec, K., Nawrat, A.: A prototype of unmanned aerial vehicle for image acquisition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 87–94. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  33. Jędrasiak, K., Nawrat, A., Wydmańska, K.: SETh-link the distributed management system for unmanned mobile vehicles. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 247–256. Springer, Heidelberg (2013)

    Google Scholar 

  34. Nawrat, N., Kozak, K., Daniec, K., Koteras, R.: Differential navigation for UAV platforms with mobile reference station. In: Proceedings of the International Conference on Applied Computer Science, pp. 465–471 (2010)

    Google Scholar 

  35. Kozak, K., Koteras, R., Daniec, K., Nawrat, A.: qB-Distributed real time control system in UAV design. In: Proceedings of the 13th WSEAS International Conference on Systems, pp. 185–189 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Kuś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuś, Z., Nawrat, A. (2013). Object Tracking for Rapid Camera Movements in 3D Space. In: Nawrat, A., Kuś, Z. (eds) Vision Based Systemsfor UAV Applications. Studies in Computational Intelligence, vol 481. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00369-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00369-6_4

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00368-9

  • Online ISBN: 978-3-319-00369-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics