Skip to main content

Object Tracking in a Picture during Rapid Camera Movements

  • Chapter
Vision Based Systemsfor UAV Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 481))

Abstract

Unmanned aerial vehicles (UAV) are very useful platforms for detecting and tracking objects which are located on the ground. The crux of the considered problem is the tracked object which disappears from a field of view. The above mentioned may be caused by rapid camera movements. One of the examples of such a situation is the camera being attached to helicopter. In case of sudden gust of wind a helicopter trajectory can be considerably and rapidly changed. This results in losing tracked object from the picture we get from the camera. The fundamental idea of the solution, which was presented here in, was based on additional data concerning camera orientation and location. Moreover the distance of a tracked object from the camera is also utilized to correct camera movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies, Palmer, P.L., Mirmehdi, M.: Detection and tracking of very small low contrast objects. In: Proceedings of the 9th British Machine Vision Conference (September 1998)

    Google Scholar 

  2. Zhang, S., Karim, M.A.: Automatic target tracking for video annotation. Op. Eng. 43, 1867–1873 (2004)

    Article  Google Scholar 

  3. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Modelsand Image Process. 53, 231–239 (1991)

    Article  Google Scholar 

  4. Chesnaud, C., Refegier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Patt. Anal. Mach. Intell. 21, 1145–1157 (1999)

    Article  Google Scholar 

  5. Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Boston (2004)

    MATH  Google Scholar 

  6. Sharp, C., Shakernia, O., Sastry, S.: A Vision System for Landing an Unmanned Aerial Vehicle. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1720–1727. IEEE, Los Alamitos (2001)

    Google Scholar 

  7. Casbeer, D., Li, S., Beard, R., Mehra, R., McLain, T.: Forest Fire Monitoring With Multiple Small UAVs, Porland, OR (April 2005)

    Google Scholar 

  8. Kuś, Z., Fraś, S.: Helicopter control algorithms from the set orientation to the set geographical location. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems of National Border Security. SCI, vol. 440, pp. 3–14. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Nawrat, A.: Modelowanie i sterowanie bezzałogowych obiektów latających. Wydawnictwo Politechniki Slaskiej, Gliwice (2009)

    Google Scholar 

  10. Valavanis, K.P. (ed.): Advances In Unmanned Aerial Vehicles. Springer (2007)

    Google Scholar 

  11. Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-Flying Machines. Springer (2005)

    Google Scholar 

  12. Padfield, G.D.: Helicopter Flight Dynamics. Backwell Science Ltd. (1996)

    Google Scholar 

  13. Manerowski, J.: Identyfikacja modeli dynamiki ruchu sterowanych obiektów lataja˛cych, WN ASKON, Warszawa (1999)

    Google Scholar 

  14. Kearney, J.K., Thompson, W.B.: Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 229–243 (1987)

    Article  Google Scholar 

  15. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)

    Article  Google Scholar 

  16. Barman, H., Haglund, L., Knutsson, H., Granlund, G.: Estimation of velocity, acceleration, and disparity in time sequences. In: Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 44–51 (1991)

    Google Scholar 

  17. Bascle, B., Bouthemy, E., Deriche, N., Meyer, E.: Tracking complex primitives in an image sequence. In: Proc. 12th International Conference on Pattern Recognition, Jerusalem, pp. 426–431 (1994)

    Google Scholar 

  18. Butt, E.J., Yen, C., Xu, X.: Local correlation measures for motion analysis: A comparativestudy. In: Pattern Recognition and Image Processing Conference, Las Vegas, pp. 269–274 (1982)

    Google Scholar 

  19. Butt, E.J., Bergen, J.R., Hingorani, R., Kolczynski, R., Lee, W.A., Leung, A., Lubin, J., Shvayster, H.: Object tracking with a moving camera. In: Proc. IEEE Workshop on Visual Motion, Irving, pp. 2–12 (1989)

    Google Scholar 

  20. Buxton, B.E., Buxton, H.: Computation of optical flow from the motion of edges features in image sequences. Image and Vision Computing 2(2), 59–75 (1984)

    Article  Google Scholar 

  21. Campani, M., Verri, A.: Computing optical flow from an overconstrained system oflinear algebraic equations. In: Proc. 3rd International Conference on Computer Vision, Osaka, pp. 22–26 (1990)

    Google Scholar 

  22. Campani, M., Verri, A.: Motion analysis from firstorder properties of optical flow. CVGIP: Image Understanding 56(1), 90–107 (1992)

    Article  MATH  Google Scholar 

  23. Carlsson, S.: Information in the geometric structure of retinal flow field. In: Proc. 2nd International Conference on Computer Vision, pp. 629–633 (1988)

    Google Scholar 

  24. Gessing, R.: Control Fundamentals. Silesian University of Technology, Gliwice (2004)

    Google Scholar 

  25. Babiarz, A., Jaskot, K., Koralewicz, P.: The control system for autonomous mobile platform. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 15–28. Springer, Heidelberg (2013)

    Google Scholar 

  26. Babiarz, A., Jaskot, K.: The concept of collision-free path planning of UAV objects. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 81–94. Springer, Heidelberg (2013)

    Google Scholar 

  27. Jaskot, K., Babiarz, A.: The inertial measurement unit for detection of position. Przegląd Elektrotechniczny 86, 323–333 (2010)

    Google Scholar 

  28. Kostrzewa, D., Josiński, H.: Verification of the search space exploration strategy based on the solutions of the join ordering problem. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 447–455. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Demski, P., Mikulski, M., Koteras, R.: Characterization of Hokuyo UTM-30LX laser range finder for an autonomous mobile robot. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 143–153. Springer, Heidelberg (2013)

    Google Scholar 

  30. Skorkowski, A., Topor-Kaminski, T.: Analysis of EGNOS-augmented receiver positioning accuracy. Acta Physica Polonica A 122(5), 821–824 (2012)

    Google Scholar 

  31. Daniec, K., Jedrasiak, K., Koteras, R., Nawrat, A.: Embedded micro inertial navigation system. Applied Mechanics and Materials 249-250, 1234–1246 (2013)

    Article  Google Scholar 

  32. Iwaneczko, P., Jędrasiak, K., Daniec, K., Nawrat, A.: A prototype of unmanned aerial vehicle for image acquisition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 87–94. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  33. Jędrasiak, K., Nawrat, A., Wydmańska, K.: SETh-link the distributed management system for unmanned mobile vehicles. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems. SCI, vol. 440, pp. 247–256. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Kuś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuś, Z., Nawrat, A. (2013). Object Tracking in a Picture during Rapid Camera Movements. In: Nawrat, A., Kuś, Z. (eds) Vision Based Systemsfor UAV Applications. Studies in Computational Intelligence, vol 481. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00369-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00369-6_5

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00368-9

  • Online ISBN: 978-3-319-00369-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics