Skip to main content

Energy and Entropy of Fractal Objects: Application to Gravitational Field

  • Conference paper
Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 210))

  • 2036 Accesses

Abstract

Various different approaches to the definition of entropy and their connections with fractal dimensions of systems were described in the paper Entropy of Fractal Systems presented at the conference Nostaradamus 2012. In the second part of the paper, the described findings were applied to study the fractal properties of image structures.

Further development is going to be presented in this paper. Conclusions of general fractal theory will be applied to the general fractal systems represented by elements (elementary particles) having fractal structure. An typical example may include the space and time distribution of mass and electric charge, i.e. the general energy. The properties of fractal fields of these quantities (gravitational, electric or other field) can be described by means of fractal geometry generally at Edimensional space, where E = 0, 1, 2, 3, ... The density of energy and entropy of these fractal elements will be also determined from the distribution of their quantity, field intensity and potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zmeskal, O., Nezadal, M., Buchnicek, M.: Fractal–Cantorian Geometry, Hausdorff Dimension and the Fundamental Laws of Physics. Chaos, Solitons & Fractals 17, 113–119 (2003)

    Article  MATH  Google Scholar 

  2. Mandelbrot, B.B.: Fractal Geometry of Nature. W. H. Freeman and Co., New York (1983)

    Google Scholar 

  3. Zmeskal, O., Nezadal, M., Buchnicek, M.: Field and potential of fractal–Cantorian structures and El Naschie’s ∞ theory. Chaos, Solitons & Fractals 19, 1013–1022 (2004)

    Article  MATH  Google Scholar 

  4. Zmeskal, O., Buchnicek, M., Vala, M.: Thermal Properties of bodies in fractal and Cantorian physics. Chaos, Solitons & Fractals 25, 941–954 (2005)

    Article  MATH  Google Scholar 

  5. Zmeskal, O., Vala, M., Weiter, M., Stefkova, P.: Fractal-cantorian geometry of space-time. Chaos, Solitons & Fractals 42, 1878–1892 (2009)

    Article  Google Scholar 

  6. Zmeskal, O., Buchnicek, M., Bednar, P.: Coupling Constants in Fractal and Cantorian Physics. Chaos, Solitons & Fractals 22, 985–997 (2004)

    Article  MATH  Google Scholar 

  7. Zmeskal, O., Nespurek, S., Weiter, M.: Space-charge-limited currents: An E-infinity Cantorian approach. Chaos, Solitons & Fractals 34, 143–156 (2007)

    Article  MATH  Google Scholar 

  8. Richardson, L.F., Ashford, O.M., Charnock, H., Drazin, P.G., Hunt, J.C.R., Smoker, P., Sutherland, I.: The Collected Papers of Lewis Fry Richardson, Cambridge (1993)

    Google Scholar 

  9. Mandelbrot, B.B.: A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension. Fractals and Chaos. Springer (2004)

    Google Scholar 

  10. Zmeskal, O., Dzik, P., Vesely, M.: Entropy of fractal systems. Computers and Mathematics with Applications (2013), doi:10.1016/j.camwa.2013.01.017

    Google Scholar 

  11. Tiny trees for solar power, UCDavis (2012), http://www.news.ucdavis.edu/search/news_detail.lasso?id=10167

  12. Lichtenberg Figure Oval Shape, Science Enterprices (2012), http://www.scienceenterprises.com/lichtenbergfigureovalshape.aspx

  13. Simulating ALMA observations of a simulated protoplanetary disk (2007), http://www.cv.nrao.edu/~rreid/ppdisksims/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zmeskal, O., Vesely, M., Dzik, P., Vala, M. (2013). Energy and Entropy of Fractal Objects: Application to Gravitational Field. In: Zelinka, I., Chen, G., Rössler, O., Snasel, V., Abraham, A. (eds) Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol 210. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00542-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00542-3_45

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00541-6

  • Online ISBN: 978-3-319-00542-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics