Abstract
On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people’s pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cioaca, E., Linnebank, F., Bredeweg, B., Salles, P.: A qualitative reasoning model of algal bloom in the danube delta biosphere reserve (ddbr). Ecol. Informatics 4(5-6), 282–298 (2009)
Clementini, E., Felice, P.D., Hernández, D.: Qualitative representation of positional information. AI 95(2), 317–356 (1997)
Cohn, A., Hazarika, S.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)
Escrig, M., Toledo, F.: Reasoning with compared distances at different levels of granularity. In: CAEPIA, Gijón, Spain (2001)
Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)
King, R., Garrett, S., Coghill, G.: On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21(9), 2017–2026 (2005)
Knauff, M., Strube, G., Jola, C., Rauh, R., Schlieder, C.: The psychological validity of qualitative spatial reasoning in one dimension. Spatial Cognition & Computation 4(2), 167–188 (2004)
Levinson, S.: Space in Language and Cognition. Explorations in Cognitive Diversity. Cambridge University Press, UK (2003)
Liu, H., Brown, D., Coghill, G.: Fuzzy qualitative robot kinematics. IEEE Trans. on Fuzzy Systems 16(3), 808–822 (2008)
Martínez-Martín, E., Escrig, M.T., del Pobil, A.P.: A General Framework for Naming Qualitative Models Based on Intervals. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 681–688. Springer, Heidelberg (2012)
Renz, J., Nebel, B.: Qualitative Spatial Reasoning Using Constraint Calculi, pp. 161–215. Springer, Berlin (2007)
van de Weghe, N., Cohn, A., de Tré, G., de Maeyer, P.: A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control and Cybernetics 35(1), 97–119 (2006)
Westphal, M., Wölfl, S.: Qualitative csp, finite csp, and sat: Comparing methods for qualitative constraint-based reasoning. In: IJCAI, pp. 628–633 (2009)
Zadeh, L.: A new direction in ai. toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Martinez-Martin, E., Escrig, M.T., del Pobil, A.P. (2013). Qualitative Acceleration Model: Representation, Reasoning and Application. In: Omatu, S., Neves, J., Rodriguez, J., Paz Santana, J., Gonzalez, S. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-00551-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-00551-5_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-00550-8
Online ISBN: 978-3-319-00551-5
eBook Packages: EngineeringEngineering (R0)