Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 488))

  • 1411 Accesses

Abstract

In this paper, we propose an efficient shape retrieval method. The idea is very simplistic, it is based on two global measures, the ellipse fitting and the minimum area rectangle. In this approach we don’t need any information about the shape structure or its boundary form, as in most shape matching methods, we have only to compute the relativity between the surface of the shape and both of the minimum area rectangle encompassing it and its ellipse fitting. The proposed method is invariant to similarity transformations (translation, isotropic scaling and rotation). In addition, the matching gives satisfying results with minimal cost. The retrieval performance is illustrated using the MPEG-7 shape database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, T.-L., Geiger, D.: Approximate tree matching and shape similarity. In: Proceedings of the IEEE International Conference on Computer Vision, Corfu, Greece, pp. 456–462 (1999)

    Google Scholar 

  2. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases, J. Visual Commun. Image Representation 9(4), 366–380 (1998)

    Article  Google Scholar 

  3. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: The Hamilton–Jacobi skeleton. In: Proceedings of the IEEE International Conference on Computer Vision, Corfu, Greece, pp. 828–834 (1999)

    Google Scholar 

  4. Pizer, S., Olivier, W., Bloomberg, S.: Hierarchical shape description via the multiresolution symmetric axis transform. IEEE Transactions on PAMI 9, 505–511 (1987)

    Article  Google Scholar 

  5. Rom, H., Medioni, G.: Hierarchical decomposition of axial shape description. IEEE Transactions on PAMI 15, 973–981 (1993)

    Article  Google Scholar 

  6. Gdalyahu, Y., Weinshall, D.: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1312–1328 (1999)

    Article  Google Scholar 

  7. Petrakis, E.G.M., Diplaros, A., Milios, E.: Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1501–1516 (2002)

    Article  Google Scholar 

  8. Mokhtarian, F.: Silhouette-based isolated object recognition through curvature scale space. IEEE Trans. Patt. Anal. Mach. Intell. 17, 539–544 (1995)

    Article  Google Scholar 

  9. Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imag. 21(5), 525–537 (2002)

    Article  Google Scholar 

  10. Hill, A., Taylor, C., Brett, A.: A framework for automatic landmark identification using a new method of nonrigid correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 241–251 (2000)

    Article  Google Scholar 

  11. Schneider, P.J., Eberly, D.H.: Geometric Tools for Computer Graphics. Textbook Binding (2002)

    Google Scholar 

  12. Coope, I.D.: Circle fitting by linear and nonlinear least squares. Journal of Optimization Theory and Applications 76(2), 381 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kanatani, K., Rangarajan, P.: Hyperaccurate ellipse fitting without iterations. In: Proc. Int. Conf. Computer Vision Theory and Applications (VISAPP 2010), Angers, France, vol. 2, pp. 5–12 (May 2010)

    Google Scholar 

  14. Sedgewick, R.: Algorithms. Addison-Wesley- the classic in the field (1983)

    Google Scholar 

  15. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  16. Gander, W., Golub, G.H., Strebel, R.: Least-Squares Fitting of Circles and Ellipses. BIT 34, 558–578 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Computer Vision and Patt. Recog.: CVPR 2000, pp. 1424–1429 (2000)

    Google Scholar 

  18. Kanatani, K.: Hyperaccurate Ellipse Fitting Without Iterations. In: Proc. Int. Conf. Computer Vision Theory and Applications (VISAPP 2010), Angers, France, vol. 2, pp. 5–12 (May 2010)

    Google Scholar 

  19. Stojmenovic, M., Nayak, A.: Direct Ellipse Fitting and Measuring Based on Shape Boundaries. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 221–235. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Yu, J., Kulkarni, S.R., Vincent Poor, H.: Robust Fitting of Ellipses and Spheroids, arXiv:0912.1647v1 (December 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliha Bouagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouagar, S., Larabi, S. (2013). Some Global Measures for Shape Retrieval. In: Amine, A., Otmane, A., Bellatreche, L. (eds) Modeling Approaches and Algorithms for Advanced Computer Applications. Studies in Computational Intelligence, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-319-00560-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00560-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00559-1

  • Online ISBN: 978-3-319-00560-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics