Skip to main content

Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies

  • Chapter
  • First Online:
Geographic Information Science at the Heart of Europe

Abstract

In the past few years, mobile network data are considered as a useful complementary source of information for human mobility research. Mobile phone datasets contain massive amount of spatiotemporal localization of millions of users. The analyze of such huge amount of data for mobility studies reveals many issues such as time computation, users sampling, spatiotemporal heterogeneities, semantic incompleteness. In this chapter, two issues are addressed: (1) location sampling aiming at decreasing computation time without losing useful information on the one hand and to eliminate data considered as noise in the other hand and (2) users sampling whose goal is to select users having relevant information. For the first issue two measures allowing eliminating redundant information and ping-pong positions are proposed. The second issue requires the definition of a set of measures allowing estimating mobile phone data quality. New methods to qualify mobile phone data at local and global level are proposed. The methods are tested on one-day mobile phone data coming from technical mobile network probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrienko G, Andrienko N, Bak P, Bremm S et al (2010) A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. J Locat Based Serv 4(3–4):200–221

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Bak P, Keim D, Kisilevich S, Wrobel S (2011) A conceptual framework and taxonomy of techniques for analyzing movement. J Visual Lang Comput 22(3):213–232

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S (2012) Scalable analysis of movement data for extracting and exploring significant places. In: Proceedings of IEEE transactions on visualization and computer graphics

    Google Scholar 

  • Becker R, Cáceres R, Hanson H, Isaacman S, Loh JM et al (2013) Anonymous location data from cellular phone networks sheds light on how people move around on a large scale. Commun ACM 56(1):74–82

    Article  Google Scholar 

  • Caceres N, Wideberg J, Benitez F (2007) Deriving origin-destination data from a mobile phone network. Intel Trans Syst IET 1(1):15–26

    Article  Google Scholar 

  • Calabrese F, Di Lorenzo G, Liu L, Ratti C (2011a) Estimating origin-destination flows using opportunistically collected mobile phone location data from one million users in Boston metropolitan area. IEEE Pervasive Comput 10(4):36–44

    Article  Google Scholar 

  • Calabrese F, Smoreda Z, Blondel V, Ratti C (2011b) Interplay between telecommunications and face-to-face interactions—a study using mobile phone data. PLoS One 6(7):e208814

    Article  Google Scholar 

  • Couronné T, Smoreda Z, Olteanu AM (2011a) Chatty mobiles: individual mobility and communication patterns. NetMob, Boston

    Google Scholar 

  • Couronné T, Olteanu AM, Smoreda Z (2011) Urban mobility: velocity and uncertainty in mobile phone data. In: Proceedings of Privacy, security, risk and trust (passat), 2011 IEEE third international conference on and 2011 IEEE third international conference on social computing (socialcom), pp 1425–30

    Google Scholar 

  • Csáji BC, Browet A, Traag VA, Delvenne JC, Huens E et al (2012) Exploring the mobility of mobile phone users. Phys A 392(6):1459–1473

    Google Scholar 

  • Diminescu D, Licoppe C, Smoreda Z, Ziemlicki C (2009) Tailing untethered mobile user: studying urban mobilities and communication practices. In: Ling R, Campbell SW (eds) The reconstruction of space and time. Mobile communication practices. Transaction Publishers, New Brunswick, NJ, pp 17–37

    Google Scholar 

  • Ekiz N, Salih T, Kucukoner S, Fidanboylu K (2005) An overview of handoff techniques in cellular networks. Int J Inf Technol 2(3):132–136

    Google Scholar 

  • Feher Z, Veres A, Heszberger Z (2012) Ping-pong reduction using sub cell movement detection. In: Proceedings of vehicular technology conference (VTC Spring)

    Google Scholar 

  • González MC, Hidalgo CA, Barabási AL (2008) Understanding individual human mobility patterns. Nature 453:779–782

    Article  Google Scholar 

  • Gudmundson M (1991) Analysis of handover algorithms. In: Proceedings of 4th IEEE vehicular technology conference, gateway to the future technology in motion

    Google Scholar 

  • Haoyi X, Zhang D, Zhang D, Gauthier V (2012) Predicting mobile phone user locations by exploiting collective behavioral patterns. In: Proceedings of the 9th IEEE conference on ubiquitous intelligence and computing (UIC’12), Fukuoka, Japan, 2012

    Google Scholar 

  • Hasan S, Schneider CM, Ukkusuri SV, González MC (2012) Spatiotemporal patterns of urban human mobility. J Stat Phys 151:304–318

    Article  Google Scholar 

  • He D, Chi C, Chan S, Chen C, Bu J, Yin M (2010) A simple and robust vertical handoff algorithm for heterogeneous wireless mobile networks. Wireless Pers Commun 59(2):361–373

    Article  Google Scholar 

  • Kang C, Liu Y, Mei Y, Xu L (2012) Evaluating the representativeness of mobile positioning data for human mobility patterns. GIScience, Columbus

    Google Scholar 

  • Olteanu Raimond AM, Trasarti R, Couronne T, Giannotti F, Nanni M et al.(2011) GSM data analysis for tourism application. In: Proceedings of 7th international symposium on spatial accuracy assessment in natural resources and environmental sciences

    Google Scholar 

  • Olteanu Raimond AM, Couronne T, Fen-Chong J, Smoreda Z (2012) Le Paris des visiteurs, qu’en disent les téléphones mobiles? Inférence des pratiques spatiales et fréquentations des sites touristiques en Ile-de-France. Revue Internationale de la Géomantique 3:413–437

    Google Scholar 

  • Onnela JP, Arbesman S, González MC, Barabási AL, Christakis NA (2011) Geographic constraints on social network groups. PLoS One 6(4):e16939

    Article  Google Scholar 

  • Phithakkitnukoon S, Horanont T, Di Lorenzo G, Shibasaki R, Ratti C (2010) Activity-aware map: identifying human daily activity pattern using mobile phone data. In: Proceedings of international conference on pattern recognition, Workshop on human behavior understanding, pp 14–25

    Google Scholar 

  • Pollini GP (1996) Trends in handover design. IEEE Commun Mag 34(3):82–90

    Article  Google Scholar 

  • Ranjan G, Zang H, Zhang Z, Bolot J (2012) Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mob Comput Commun Rev 16(3):33–44

    Article  Google Scholar 

  • Schulz D, Bothe S, Körner C (2012) Human mobility from GSM data-a valid alternative to GPS? Mobile data challenge 2012 workshop, June 18–19, Newcastle, UK

    Google Scholar 

  • Sevtsuk A, Ratti C (2010) Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J Urban Technol 17(1):41–60

    Article  Google Scholar 

  • Smoreda Z, Olteanu-Raimond AM, Couronné T (2013) Spatiotemporal data from mobile phones for personal mobility assessment. In: Zmud J, Lee-Gosselin M, Carrasco JA, Munizaga MA (eds) Transport survey methods: best practice for decision making. Emerald Group Publishing, London

    Google Scholar 

  • Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human mobility. Science 327:1018–1021

    Article  Google Scholar 

  • Steenbruggen J, Borzacchiello MT, Nijkamp P, Scholten H (2011) Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities. GeoJournal 78:223–243

    Article  Google Scholar 

  • Tiru M, Ahas R (2012) Passive anonymous mobile positioning data for tourism statistics. In: Proceedings of 11th global forum on tourism statistics, Iceland

    Google Scholar 

  • Vieira MR, Frias-Martinez E, Bakalov P, Frias-Martinez V, Tsotras VJ (2010) Querying spatio-temporal patterns in mobile phone-call databases. In: Proceedings of eleventh international conference on mobile data management (MDM), pp 239–248

    Google Scholar 

  • Yuan Y, Raubal M, Liu Y (2011) Correlating mobile phone usage and travel behavior—a case study of Harbin, China. Comput Environ Urban Syst 36(2):118–130

    Article  Google Scholar 

  • Zhang Y, Qin X, Dong S, Ran B (2010) Daily O-D matrix estimation using cellular probe data. In: Proceedings of 89th annual meeting transportation research board

    Google Scholar 

  • Zhao N, Huang W, Song G, Xie K (2011) Discrete trajectory prediction on mobile data. In: APWeb’11 Proceedings of the 13th Asia-Pacific web conference on web technologies and applications, pp 77–88

    Google Scholar 

  • Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on GPS data. In: Proceedings of the 10th international conference on ubiquitous computing

    Google Scholar 

Download references

Acknowledgments

We would like to thank our colleague, Cezary Ziemlicki, who preprocessed data and has discussed with us many technical issues related to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina Iovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iovan, C., Olteanu-Raimond, AM., Couronné, T., Smoreda, Z. (2013). Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies. In: Vandenbroucke, D., Bucher, B., Crompvoets, J. (eds) Geographic Information Science at the Heart of Europe. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-00615-4_14

Download citation

Publish with us

Policies and ethics