Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 226))

Abstract

Interest point detectors typically operate on 2D images, yet these frequently constitute projections of real 3D scenes [8]. Analysing and comparing the performance of these detectors as to their utility at tracking points in a 3D space is challenging. This paper demonstrates a virtual 3D environment which can measure the repeatability of detected interest points accurately and rapidly. Real-time 3D transform tools enable easy implementation of complex scene evaluations without the time-cost of a manual setup or mark-up. Nine detectors are tested and compared using evaluation and testing methods based on Schmid [16]. Each detector is tested on 34 textured and untextured models that are either scanned from physical objects or modelled by an artist. Rotation in the X, Y, and Z axis as well as scale transformations are tested on each model, with varying degrees of artificial noise applied. Results demonstrate the performance variability of different interest point detectors under different transformations and may assist researchers in deciding on the correct detector for their computer vision application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaudet, P.: Rotationally invariant image operators. In: Proc. Intl. Joint Conf. on Pattern Recognition, pp. 579–583 (1978)

    Google Scholar 

  2. Carlo Tomasi, T.K.: Detection and tracking of point features. In: Carnegie Mellon University Tech. Rpt (1991)

    Google Scholar 

  3. Förstner, W.: A feature based correspondence algorithms for image matching. Intl. Arch. Photogrammetry and Remote Sensing 24, 160–166 (1986)

    Google Scholar 

  4. Gauglitz, S., Hllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. Journal of Comp. Vis. 94, 335–360 (2011)

    Article  MATH  Google Scholar 

  5. Gil, A., Mozos, O., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual slam. Machine Vision and Applications 21, 905–920 (2010)

    Article  Google Scholar 

  6. Guillaume Gals, S.C., Crouzil, A.: Complementarity of feature point detectors. Intl. Joint Conf. on Comp. Vis. Theory and App. (2010)

    Google Scholar 

  7. Harris, C., Stephens, M.: A combined corner and edge detector (1988)

    Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)

    Google Scholar 

  9. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Köthe, U.: Generische programmierung für die bildverarbeitung. PhD Thesis, Universität Hamburg (2000)

    Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Intl. Journal of Comp. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  12. Olague, G., Trujillo, L.: Evolutionary computer assisted design of image operators that detect interest points using genetic programming. Image and Vision Computing 29, 484–498 (2011)

    Article  Google Scholar 

  13. Rohr, K.: Modelling and identification of characteristic intensity variations. Image and Vis. Comp. 10, 66–76 (1992)

    Article  Google Scholar 

  14. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: IEEE Intl. Conf. on Comp. Vis., vol. 2, pp. 1508–1511 (October 2005)

    Google Scholar 

  15. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European Conf. on Comp. Vis., vol. 1, pp. 430–443 (May 2006)

    Google Scholar 

  16. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Intl. Journal of Comp. Vis. 37, 151–172 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Lang, S.R., Luerssen, M.H., Powers, D.M.W. (2013). Repeatability Measurements for 2D Interest Point Detectors on 3D Models. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00969-8_35

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00968-1

  • Online ISBN: 978-3-319-00969-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics