Skip to main content

Classification of Uterine Electrical Activity Patterns for Early Detection of Preterm Birth

  • Conference paper
Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 226))

Abstract

Preterm birth is the leading cause of a neonatal death, so it is extremely important to distinguish the pregnancy at risk of preterm threatening labour. Monitoring an electrical activity of the uterine muscle seems very promising as a method which enables noninvasive recording of good quality electrohysterographic signals. The developed instrumentation enabled recording of signals by means of electrodes attached to abdominal wall and determination of quantitative parameters describing the contractions detected. Our research material comprised 3 groups of patients: with physiological pregnancy, with the symptoms of premature threatening labour and patients during at term labour. The classification of uterine activity signals in each pair of groups was made using nonlinear Lagrangian Support Vector Machines which allows for improving the computational efficiency and learning quality of the SVM algorithm. The obtained results show that the proposed approach is able to differentiate between the contractile activity in physiological pregnancy and that connected with a risk of premature labour. Identification of these high-risk pregnancies leads to an enhanced perinatal surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamber, D.: The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol. 4, 387–415 (1975)

    Article  MathSciNet  Google Scholar 

  2. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  3. Byun, H., Lee, S.W.: Applications of support vector machines for pattern recognition: A survey. In: Proc. of 1st International Workshop on Pattern Recognition with Support Vector Machines, vol. 2, pp. 213–236 (2002)

    Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  5. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. on Electronic Computers 14, 326–334 (1965)

    Article  MATH  Google Scholar 

  6. Czabanski, R., Jezewski, J., Matonia, A., et al.: Computerized Analysis of Fetal Heart Rate Signals as the Predictor of Neonatal Acidemia. Expert Syst. Appl. 39(15), 11846–11860 (2012)

    Article  Google Scholar 

  7. Czabanski, R., Jezewski, M., Wrobel, J., et al.: Predicting the Risk of Low Fetal Birth Weight from Cardiotocographic Signals using ANBLIR System with Deterministic Annealing and e-Insensitive Learning. IEEE T. Inf. Technol. B. 14(4), 1062–1074 (2010)

    Article  Google Scholar 

  8. Devedeux, D., Marque, C., Mansour, S., et al.: Uterine Electromyography: a critical review. Am. J. Obstet. Gynecol. 169, 1636–1653 (1993)

    Article  Google Scholar 

  9. Euliano, T.Y., Nguyen, M.T., Darmanjian, S., et al.: Monitoring uterine activity during labor: a comparison of 3 methods. Am. J. Obstet. Gynecol. 208, 66.e1–6 (2013)

    Google Scholar 

  10. Harrison, A., Crowe, J.A., Hayes-Gill, B.R., et al.: Use of the electrohysterogram for uterine contraction monitoring during labour. In: Proc. of 3rd European Conference on Engineering and Medicine, pp. 90–95 (1995)

    Google Scholar 

  11. Jezewski, J., Horoba, K., Matonia, A., et al.: A new approach to cardiotocographic fetal monitoring based on analysis of bioelectrical signals. In: Proc. of 25th Int. Conf. of IEEE Engineering in Medicine and Biology Society, pp. 3145–3149 (2003)

    Google Scholar 

  12. Jezewski, J., Horoba, K., Matonia, A., et al.: Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiol. Meas. 26, 753–767 (2006)

    Article  Google Scholar 

  13. Jezewski, J., Wrobel, J., Horoba, K., et al.: Computerized perinatal database for retrospective qualitative assessment of cardiotocographic traces. In: Richards, B. (ed.) Current Perspectives in Healthcare Computing, pp. 187–196. BJHC Limited, Great Britain (1996)

    Google Scholar 

  14. Jezewski, J., Wrobel, J., Horoba, K., et al.: Fetal heart rate variability: clinical experts versus computerized system interpretation. In: Proc. of 24th Int. Conf. of IEEE Engineering in Medicine and Biology Society, pp. 1617–1618 (2002)

    Google Scholar 

  15. Jezewski, M., Wrobel, J., Labaj, P., et al.: Some Practical Remarks on Neural Networks Approach to Fetal Cardiotocograms Classification. In: Proc. of 29th Int. Conf. of IEEE Engineering in Medicine and Biology Society, pp. 5170–5173 (2007)

    Google Scholar 

  16. La Rosa, P.S., Nehorai, A., Eswaran, H., et al.: Detection of uterine MMG contractions using a multiple change point estimator and the K-means cluster algorithm. IEEE T. Biomed. Eng. 55(2), 453–467 (2008)

    Article  Google Scholar 

  17. Lucovnik, M., Kuon, R.J., Chambliss, L.R., et al.: Use of uterine electromyography to diagnose term and preterm labor. Acta. Obstet. Gynecol. Scand. 90(2), 150–157 (2011)

    Article  Google Scholar 

  18. Maner, W., Garfield, R., Maul, H., et al.: Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet. Gynecol. 101, 1254–1260 (2003)

    Article  Google Scholar 

  19. Mangasarian, O., Musicant, D.: Lagrangian support vector machines. J. Mach. Learn. Res. 1, 161–177 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Rabotti, C., Mischi, M., Oei, S.G., et al.: Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE T. Biomed. Eng. 57(9), 2178–2187 (2010)

    Article  Google Scholar 

  21. Takagi, K., Satoh, K., Muraoka, M., et al.: A mathematical model for predicting outcome in preterm labour. J. Int. Med. Res. 40(4), 1459–1466 (2012)

    Article  Google Scholar 

  22. Verdenik, I., Pajntar, M., Leskosek, B.: Uterine electrical activity as predictor of preterm birth in women with preterm contractions. Eur. J. Ostet. Gynecol. Reprod. Biol. 95, 149–153 (2001)

    Article  Google Scholar 

  23. Vrhovec, J., Rudel, D., Lebar, A.M.: The importance of uterine contractions extraction in evaluation of the progress of labour by calculating the values of sample entropy from uterine electromyogram. In: IFMBE Proceedings, vol. 29, pp. 140–143 (2010)

    Google Scholar 

  24. Warrick, P.A., Hamilton, E.F., Precup, D., et al.: Identification of the dynamic relationship between intrapartum uterine pressure and fetal heart rate for normal and hypoxic fetuses. IEEE T. Biomed. Eng. 56(6), 1587–1597 (2009)

    Article  Google Scholar 

  25. Zietek, J., Sikora, J., Horoba, K., et al.: Mechanical and electrical uterine activity. Part I. Contractions monitorin. Ginekol. Pol. 79(11), 791–797 (2008) (in Polish)

    Google Scholar 

  26. Zietek, J., Sikora, J., Horoba, K., et al.: Mechanical and electrical uterine activity. Part II. Contraction parameters. Ginekol. Pol. 79(11), 798–804 (2008) (in Polish)

    Google Scholar 

  27. Zietek, J., Sikora, J., Horoba, K., et al.: Prognostic value of chosen parameters of mechanical and bioelectrical uterine activity in prediction of threatening premature labour. Ginekol. Pol. 80(3), 193–200 (2009) (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Jezewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Jezewski, J., Matonia, A., Czabanski, R., Horoba, K., Kupka, T. (2013). Classification of Uterine Electrical Activity Patterns for Early Detection of Preterm Birth. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00969-8_55

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00968-1

  • Online ISBN: 978-3-319-00969-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics