Abstract
We present a fast and accurate algorithm–reduced kernel extreme learning machine (Reduced-KELM). It randomly selects a subset from given dataset, and uses \(\mathcal{K}(X,\tilde{X})\) in place of \(\mathcal{K}(X,X)\). The large scale kernel matrix with size of n×n is reduced to \(n\times \tilde{n} \), and the time-consuming computation for inversion of kernel matrix is reduced to \(O(\tilde{n}^3) \) from O(n 3) where \(\tilde{n} \ll n \). The experimental results show that Reduced-KELM can perform at a similar level of accuracy as KELM and at the same time being significantly faster than KELM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B 42(2), 513–529 (2012)
Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and applications. Neurocomputing 70(1-3), 489–501 (2006)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999)
Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)
Scholkopf, B., Smola, A., Mller, K.R.: Kernel principal component analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)
Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation 13, 637–649 (2001)
Wu, G., Zhang, Z., Chang, E.Y.: Kronecker factorization for speeding up kernel machines. In: SIAM Int. Conference on Data Mining (SDM), pp. 611–615 (2005)
Lin, K.M., Lin, C.J.: A study on reduced support vector machines. IEEE Transactions on Neural Networks 14(6), 1449–1459 (2003)
Liu, Q., He, Q., Shi, Z.-Z.: Extreme support vector machine classifier. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 222–233. Springer, Heidelberg (2008)
Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008)
Huang, G.B., Chen, L.: incremental extreme learning machine. Neurocomputing 70(16), 3056–3062 (2007)
Courrieu, P.: Fast computation of Moore-Penrose inverse matrices. Neural Information Processing - Letters and Reviews 8(2), 25–29 (2005)
Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
Rumelhart, D.E., Hintont, G.E., Williams, R.J.: representations by back-propagating errors. Nature. 323(6088), 533–536 (1986)
Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems 42(1), 80–86 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Deng, W., Zheng, Q., Zhang, K. (2013). Reduced Kernel Extreme Learning Machine. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-00969-8_6
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-00968-1
Online ISBN: 978-3-319-00969-8
eBook Packages: EngineeringEngineering (R0)