Skip to main content

Task Allocation in Distributed Mesh-Connected Machine Learning System: Simplified Busy List Algorithm with Q-Learning Based Queuing

  • Conference paper
Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 226))

  • 2490 Accesses

Abstract

In the era where organizations gather and process more and more data, Machine Learning (ML) techniques become increasingly important. Considering “Big Data,” ML usually involves intensive data processing and high-performance computing. To meet the growing requirements, efficient distributed and parallel systems are key factors. In this paper, we consider mesh-based distributed system and task allocation methods in the system. We focus especially on the impact of intelligent queuing in task allocation algorithms. A new SBL algorithm with Q-Learning queuing is presented. In addition, the new SBL technique is compared to other well-known allocation schemes, which are discussed as well. The comparison is made using an implemented experimentation system and simulation results are presented. The results confirm that SBL algorithm and the queuing system deliver good performance characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arimond, A.: A distributed system for pattern recognition and machine learning. Master’s thesis, TU Kaiserslautern and DFKI, Kaiserslautern (2010)

    Google Scholar 

  2. Borkar, V.R., et al.: Declarative systems for large-scale machine learning. IEEE Data Engineering Bulletin 32(2), 24–32 (2012)

    MathSciNet  Google Scholar 

  3. Chuang, P.J., Tzeng, N.F.: An effcient submesh allocation strategy for mesh computer systems. In: 11th Inter. Conf. on Distr. Comp. Sys., pp. 256–263 (1991)

    Google Scholar 

  4. Ding, J., Bhuyan, L.N.: An adaptive submesh allocation strategy for two-dimensional mesh connected systems. In: Inter. Conf. on Para. Proc (ICPP 1993), vol. 2, pp. 193–200 (1993), doi:10.1109/ICPP.1993.39

    Google Scholar 

  5. Kamath, U., Kaers, J., Shehu, A., De Jong, K.A.: A spatial EA framework for parallelizing machine learning methods. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 206–215. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Koszalka, L., Kubiak, M., Pozniak-Koszalka, I.: Comparison of SBA – family task allocation algorithms for mesh structured networks. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 21–30. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Tarnawski, M., Tarasiewicz, A.: Dynamiczna alokacja zadan w sieciach MESH. In: Students’ Science Conference, Wroclaw University of Technology (2010)

    Google Scholar 

  8. Upadhyaya, S.R.: Parallel approaches to machine learning–A comprehensive survey. J. of Para. and Distr. Comp. 73(3), 284–292 (2013)

    Article  Google Scholar 

  9. Wu, F., et al.: Processor allocation in mesh multiprocessors using the leapfrog method. IEEE Trans. on Para. and Distr. Sys. 14(3), 276–289 (2003)

    Article  Google Scholar 

  10. Yoo, B., Das, C.: A fast and effcient processor allocation scheme for mesh-connected multicomputers. IEEE Trans. on Comp. 51(1), 46–60 (2002)

    Article  Google Scholar 

  11. Yoo, S.M., Youn, H.Y., Shirazi, B.: An effcient task allocation scheme for 2D mesh architectures. IEEE Trans. on Para. and Distr. Sys. 8(9), 934–942 (1997)

    Article  Google Scholar 

  12. Zhu, Y.: Effcient processor allocation strategies for mesh-connected parallel computers. J. of Para. and Distr. Comp. 16(4), 328–337 (1992)

    Article  MATH  Google Scholar 

  13. Zydek, D., Selvaraj, H.: Fast and effcient processor allocation algorithm for torus-based chip multiprocessors. J. of Comp. & Elect. Eng. 37(1), 91–105 (2011), doi:10.1016/j.compeleceng.2010.10.001

    Article  MATH  Google Scholar 

  14. Zydek, D., et al.: Evaluation scheme for NoC-based CMP with integrated processor management system. Inter. J. of Elect. and Telecommu. 56(2), 157–168 (2010), doi:10.2478/v10177-010-0021-4

    Google Scholar 

  15. Zydek, D., et al.: Energy characteristic of a processor allocator and a network-on-chip. Inter. J. of Applied Math. and Comp. Sci. 21(2), 385–399 (2011), doi:10.2478/v10006-011-0029-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Majkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Majkowska, A., Zydek, D., Koszałka, L. (2013). Task Allocation in Distributed Mesh-Connected Machine Learning System: Simplified Busy List Algorithm with Q-Learning Based Queuing. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00969-8_75

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00968-1

  • Online ISBN: 978-3-319-00969-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics