Skip to main content

Towards the Unification of Locomotion and Manipulation through Control Lyapunov Functions and Quadratic Programs

  • Chapter
Control of Cyber-Physical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 449))

Abstract

This paper presents the first steps toward unifying locomotion controllers and algorithms with whole-body control and manipulation. A theoretical framework for this unification will be given based upon quadratic programs utilizing control Lyapunov functions. In particular, we will first consider output based feedback linearization strategies for locomotion together with whole-body control methods for manipulation. We will show that these two traditionally disjoint methods are equivalent through the correct choice of controller. We will then present a method for unifying these two methodologies through the use of control Lyapunov functions presented in the form of a quadratic program. In addition, it will be shown that these controllers can be combined with force-based control to achieve locomotion and force-based manipulation in a single framework. Finally, simulation results will be presented demonstrating the validity of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ames, A.D.: First steps toward automatically generating bipedal robotic walking from human data. In: KozÅ‚owski, K. (ed.) Robot Motion and Control 2011. LNICS, vol. 422, pp. 89–116. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Ames, A.D.: First steps toward underactuated human-inspired bipedal robotic walking. In: IEEE International Conference on Robotics and Automation, St. Paul, MN (2012)

    Google Scholar 

  3. Ames, A.D.: Human-inspired control of bipedal walking robots. To appear in the IEEE Trans. Automatic Control (2013)

    Google Scholar 

  4. Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable robotic walking with NAO via human-inspired hybrid zero dynamics. In: Hybrid Systems: Computation and Control, Beijing (2012)

    Google Scholar 

  5. Ames, A.D., Galloway, K., Grizzle, J.W.: Control Lyapunov functions and hybrid zero dynamics. In: Proc. 51st IEEE Conf. Decision and Control (2012)

    Google Scholar 

  6. Ames, A.D., Galloway, K., Grizzle, J.W., Sreenath, K.: Rapidly exponentially stabilizing control Lyapunov runctions and hybrid zero dynamics. To appear in IEEE Trans. Automatic Control (2013)

    Google Scholar 

  7. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics 14, 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bemporad, A., Morari, M.: Robust model predictive control: A survey. Robustness in Identification and Control 245, 207–226 (1999)

    Article  MathSciNet  Google Scholar 

  9. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit solution of model predictive control via multiparametric quadratic programming. In: Proceedings of the American Control Conference (2012)

    Google Scholar 

  10. Freeman, R.A., Kokotović, P.V.: Robust Nonlinear Control Design. Birkhäuser (1996)

    Google Scholar 

  11. Galloway, K., Sreenath, K., Ames, A.D., Grizzle, J.W.: Torque saturation in bipedal robotic walking through control lyapunov function based quadratic programs. CoRR, abs/1302.7314 (2013)

    Google Scholar 

  12. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic control 46(1), 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grizzle, J.W., Chevallereau, C., Ames, A.D., Sinnet, R.W.: 3D bipedal robotic walking: models, feedback control, and open problems. In: IFAC Symposium on Nonlinear Control Systems, Bologna (September 2010)

    Google Scholar 

  14. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation 3, 43–53 (1987)

    Article  Google Scholar 

  15. Khatib, O., Sentis, L., Park, J., Warren, J.: Whole-body dynamic behavior and control of human-like robots. International Journal of Humanoid Robotics 1, 29–43 (2004)

    Article  Google Scholar 

  16. Kolavennu, S., Palanki, S., Cockburn, J.C.: Nonlinear control of nonsquare multivariable systems. Chemical Engineering Science 56, 2103–2110 (2001)

    Article  Google Scholar 

  17. Lee, S.H., Goswami, A.: A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots 33(4), 399–414 (2012)

    Article  Google Scholar 

  18. Mattingley, J., Boyd, S.: Cvxgen: a code generator for embedded convex optimization. Optimization and Engineering 13(1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  19. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. Boca Raton (1994)

    Google Scholar 

  21. Oppenheimer, M.W., Doman, D.B., Bolender, M.A.: Dynamic balance force control for compliant humanoid robots. In: 14th Mediterranean Conference on Control and Automation, MED 2006, pp. 1–6 (2006)

    Google Scholar 

  22. Powell, M., Hereid, A., Ames, A.D.: Speed regulation in 3D robotic walking through motion transitions between human-inspired partial hybrid zero dynamics. To appear in the IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  23. Powell, M.J., Zhao, H., Ames, A.D.: Motion primitives for human-inspired bipedal robotic locomotion: Walking and stair climbing. In: IEEE International Conference on Robotics and Automation, St. Paul, MN (2012)

    Google Scholar 

  24. Saab, L., Ramos, O.E., Keith, F., Mansard, N., Soueres, P., Fourquet, J.-Y.: Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics 29(2), 346–362 (2013)

    Article  Google Scholar 

  25. Salini, J., Padois, V., Bidaud, P.: Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1283–1290 (2011)

    Google Scholar 

  26. Sastry, S.S.: Nonlinear Systems: Analysis, Stability and Control. Springer (1999)

    Google Scholar 

  27. Siciliano, B., Slotine, J.J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Fifth International Conference on Advanced Robotics, ICAR (1991)

    Google Scholar 

  28. Sontag, E.: A ‘universal’ contruction of Artstein’s theorem on nonlinear stabilization. Systems & Control Letters 13, 117–123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Srinivasan, S., Raptis, I.A., Westervelt, E.R.: Low-dimensional sagittal plane model of normal human walking. ASME Journal of Biomechanical Engineering 130(5) (2008)

    Google Scholar 

  30. Stephens, B.J., Atkeson, C.G.: Push recovery by stepping for humanoid robots with force controlled joints. In: IEEE International Conference on Humanoid Robots (2010)

    Google Scholar 

  31. Stephens, B.J., Atkeson, C.G.: Dynamic balance force control for compliant humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2010)

    Google Scholar 

  32. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: Feedback motion planning via sums of squares verification. International Journal of Robotics Research 29, 1038–1052 (2010)

    Article  Google Scholar 

  33. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE Transations on Control Systems Technology 18(2), 267–278 (2010)

    Article  Google Scholar 

  34. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion, Boca Raton (June 2007)

    Google Scholar 

  35. Nadubettu Yadukumar, S., Pasupuleti, M., Ames, A.D.: From formal methods to algorithmic implementation of human inspired control on bipedal robots. In: Tenth International Workshop on the Algorithmic Foundations of Robotics (WAFR), Boston, MA (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Ames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ames, A.D., Powell, M. (2013). Towards the Unification of Locomotion and Manipulation through Control Lyapunov Functions and Quadratic Programs. In: Tarraf, D. (eds) Control of Cyber-Physical Systems. Lecture Notes in Control and Information Sciences, vol 449. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01159-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01159-2_12

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01158-5

  • Online ISBN: 978-3-319-01159-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics