Skip to main content

A Distributed Feedback Control Approach to the Optimal Reactive Power Flow Problem

  • Chapter
Book cover Control of Cyber-Physical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 449))

Abstract

We consider the problem of exploiting the microgenerators connected to the low voltage or medium voltage grid in order to provide distributed reactive power compensation in the power distribution network, solving the optimal reactive power flow problem for the minimization of power distribution losses subject to voltage constraints. The proposed strategy requires that all the intelligent agents, located at the generator buses, measure their voltage and share these data with the other agents via a communication infrastructure. The agents then adjust the amount of reactive power injected into the grid according to a policy which is a specialization of duality-based methods for constrained convex optimization. Convergence of the algorithm to the configuration of minimum losses and feasible voltages is proved analytically. Simulations are provided in order to demonstrate the algorithm behavior, and the innovative feedback nature of such strategy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katiraei, F., Iravani, M.R.: Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans. Power Syst. 21(4), 1821–1831 (2006)

    Article  Google Scholar 

  2. Prodanovic, M., De Brabandere, K., Van den Keybus, J., Green, T., Driesen, J.: Harmonic and reactive power compensation as ancillary services in inverter-based distributed generation. IET Gener. Transm. Distrib. 1(3), 432–438 (2007)

    Article  Google Scholar 

  3. Zhao, B., Guo, C.X., Cao, Y.J.: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Trans. Power Syst. 20(2), 1070–1078 (2005)

    Article  Google Scholar 

  4. Lavaei, J., Rantzer, A., Low, S.H.: Power flow optimization using positive quadratic programming. In: Proc. 18th IFAC World Congr. (2011)

    Google Scholar 

  5. Lam, A.Y.S., Zhang, B., Dominiguez-Garcia, A., Tse, D.: Optimal distributed voltage regulation in power distribution networks. arXiv [math.OC] 1204.5226 (2012)

    Google Scholar 

  6. Tenti, P., Costabeber, A., Mattavelli, P., Trombetti, D.: Distribution loss minimization by token ring control of power electronic interfaces in residential microgrids. IEEE Trans. Ind. Electron 59(10), 3817–3826 (2012)

    Article  Google Scholar 

  7. Bolognani, S., Zampieri, S.: Distributed control for optimal reactive power compensation in smart microgrids. In: Proc. 50th IEEE Conf. on Decision and Control and European Control Conf. (CDC-ECC 2011), Orlando, FL (2011)

    Google Scholar 

  8. Green, T.C., Prodanović, M.: Control of inverter-based micro-grids. Electr. Pow. Syst. Res. 77(9), 1204–1213 (2007)

    Article  Google Scholar 

  9. Lopes, J.A., Moreira, C.L., Madureira, A.G.: Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)

    Article  Google Scholar 

  10. Bolognani, S., Zampieri, S.: A distributed control strategy for reactive power compensation in smart microgrids. Submitted to IEEE Transactions on Automatic Control, arXiv preprint available [math.OC] 1106.5626 (2012)

    Google Scholar 

  11. Phadke, A.G.: Synchronized phasor measurements in power systems. IEEE Comput. Appl. Power 6(2), 10–15 (1993)

    Article  MathSciNet  Google Scholar 

  12. Kundur, P.: Power system stability and control. McGraw-Hill (1994)

    Google Scholar 

  13. Costabeber, A., Erseghe, T., Tenti, P., Tomasin, S., Mattavelli, P.: Optimization of micro-grid operation by dynamic grid mapping and token ring control. In: Proc. 14th European Conf. on Power Electronics and Applications (EPE), Birmingham, UK (2011)

    Google Scholar 

  14. Dorfler, F., Bullo, F.: Kron reduction of graphs with applications to electrical networks. IEEE Transactions on Circuits and Systems I 60, 150–163 (2013)

    Article  MathSciNet  Google Scholar 

  15. Ciobotaru, M., Teodorescu, R., Rodriguez, P., Timbus, A., Blaabjerg, F.: Online grid impedance estimation for single-phase grid-connected systems using PQ variations. In: Proc. 38th IEEE Power Electronics Specialists Conf., PESC (2007)

    Google Scholar 

  16. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter. In: Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 2437–2442 (2007)

    Google Scholar 

  17. Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  18. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. (2011)

    Google Scholar 

  19. Baran, M.E., Wu, F.F.: Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Del. 4, 735–743 (1989)

    Article  Google Scholar 

  20. Turitsyn, K., Šulc, P., Backhaus, S., Chertkov, M.: Options for control of reactive power by distributed photovoltaic generators. Proc. IEEE 99(6), 1063–1073 (2011)

    Article  Google Scholar 

  21. Gómez-Expósito, A., Conejo, A.J., Cañizares, C.: Electric energy systems. Analysis and operation. CRC Press (2009)

    Google Scholar 

  22. Kersting, W.H.: Radial distribution test feeders. In: IEEE Power Engineering Society Winter Meeting, vol. 2, pp. 908–912 (2001)

    Google Scholar 

  23. Bolognani, S., Cavraro, G., Carli, R., Zampieri, S.: A distributed feedback control strategy for optimal reactive power flow with voltage constraints. arXiv:1303.7173 [math.OC] (2013)

    Google Scholar 

  24. Wang, J., Elia, N.: A control perspective for centralized and distributed convex optimization. In: Proceedings of the 50th IEEE Conference on Decision and Control (CDC), Orlando, FL, USA, pp. 3800–3805 (2011)

    Google Scholar 

  25. Bolognani, S., Zampieri, S.: A distributed optimal control approach to dynamic reactive power compensation. In: Proc. 51st IEEE Conf. on Decision and Control, CDC (2012)

    Google Scholar 

  26. Uzawa, H.: The Kuhn-Tucker theorem in concave programming. Studies in linear and nonlinear programming, pp. 32–37. Stanford University Press (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Bolognani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolognani, S., Cavraro, G., Zampieri, S. (2013). A Distributed Feedback Control Approach to the Optimal Reactive Power Flow Problem. In: Tarraf, D. (eds) Control of Cyber-Physical Systems. Lecture Notes in Control and Information Sciences, vol 449. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01159-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01159-2_14

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01158-5

  • Online ISBN: 978-3-319-01159-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics