Skip to main content

CPS Modeling Integration Hub and Design Space Exploration with Application to Microrobotics

  • Chapter
Control of Cyber-Physical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 449))

Abstract

We describe a new methodology and environment for Cyber Physical Systems (CPS) synthesis and demonstrate it in the design of microrobots viewed as CPS. Various types of microrobots have been developed in recent years for applications related to collaborative motion such as, sensor networks, exploration and search-rescue in hazardous environments and medical drug delivery. However, control algorithms for these prototypes are very limited. Our new approach for modeling and simulation of the complete microrobotics system allows the robots to complete more complex tasks as per specifications. Since the microrobots tend to have small features, complex micro-structures and hierarchy, the control laws cannot be designed separately from the physical layer of the robots. Such a type of microrobot is indeed a CPS, as control in the cyber side, and the material properties and geometric structure in the physical side, are tightly interrelated. This design approach is important for microrobots, capable of collaborating and completing complex tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, M.A., Baras, J.S., Kositsyna, N.I.: Combined Research and Curriculum Development in Information-Centric Systems Engineering. In: Proc. of the 12th Annual Intern. Council on Systems Engineering (INCOSE) Symposium (2002)

    Google Scholar 

  2. Yang, S., Baras, J.S.: Factor Join Trees in Systems Exploration. In: Proceedings of the 23rd International Conference on Software and Systems Engineering and their Applications (ICSSEA 2011), Paris, France (2011)

    Google Scholar 

  3. Wang, B., Baras, J.S.: Integrated Modeling and Simulation Framework for Wireless Sensor Networks. In: Proceedings of the 21st IEEE International Conference on Collaboration Technologies and Infrastructures (WETICE 2012- CoMetS track), Toulouse, France, pp. 268–273 (2012)

    Google Scholar 

  4. Yang, S., Zhou, Y., Baras, J.S.: Compositional Analysis of Dynamic Bayesian Networks and Applications to Complex Dynamic System Decomposition. In: Proc. of the Conf. on Systems Engineering Research, CSER 2013 (2013)

    Google Scholar 

  5. Yang, S., Wang, B., Baras, J.S.: Interactive Tree Decomposition Tool for Reducing System Analysis Complexity. In: Proc. of the Conf. on Systems Engineering Research, CSER 2013 (2013)

    Google Scholar 

  6. Spyropoulos, D., Baras, J.S.: Extending Design Capabilities of SysML with Trade-off Analysis: Electrical Microgrid Case Study. In: Proc. of the Conference on Systems Engineering Research, CSER 2013 (2013)

    Google Scholar 

  7. International Council on Systems Engineering (INCOSE): Systems Engineering Vision 2020. Version 2.03, TP-2004-004-02 (2007)

    Google Scholar 

  8. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML. The MK/OMG Press (2009)

    Google Scholar 

  9. Baras, J.S.: Lecture Notes for MSSE class, ENSE 621 (2002)

    Google Scholar 

  10. Haskins, C., Forsberg, K., Krueger, M., Walden, D., Hamelin, D.: Systems Engineering Handbook. INCOSE, San Diego (2011)

    Google Scholar 

  11. The eMoflon team: An Introduction to Metamodelling and Graph Transformations with eMoflon, V 1.4. TU Darmsadt (2011)

    Google Scholar 

  12. Anjorin, A., Lauder, M., Patzina, S., Schurr, A.: eMoflon: Leveraging EMF and Professional CASE Tools. In: INFORMATIK 2011, Bonn (2011)

    Google Scholar 

  13. No Magic, Inc.: Open API-User Guide. Version 17.0.1 (2011)

    Google Scholar 

  14. Meyer, J., Ball, M., Baras, J.S., Chowdhury, A., Lin, E., Nau, D., Rajamani, R., Trichur, V.: Process Planning in Microwave Module Production. In: Proc. SIGMAN: AI and Manufacturing: State of the Art and State of Practice (1998)

    Google Scholar 

  15. Fan, M.K.H., Tits, A.L., Zhou, J., Wang, L.-S., Koninckx, J.: CONSOLE-User’s Manual. Technical report, Un. of Maryland, Vers. 1.1 (1990)

    Google Scholar 

  16. Fan, M.K.H., Wang, L.-S., Koninckx, J., Tits, A.L.: Software Package for Optimization-Based Design with User-Supplied Simulators. IEEE Control Systems Magazine 9(1), 66–71 (1989)

    Article  Google Scholar 

  17. Tischler, M.B., Colbourne, J.D., Morel, M.R., Biezad, D.J.: A Multidisciplinary Flight Control Development Environment and its Application to a Helicopter. IEEE Control Systems Magazine 19(4), 22–33 (1999)

    Article  Google Scholar 

  18. Potter, P.J.: Parametrically Optimal Control for the UH-60A (Black Hawk) Rotorcraft in Forward Flight. MS Thesis, Un. of Maryland (1995)

    Google Scholar 

  19. Nagy, Z., Ergeneman, O., Abbott, J., Hutter, M., Hirt, A., Nelson, B.: Modeling assembled-mems microrobots for wireless magnetic control. In: Proc. of IEEE Intern. Conf. on Robotics and Automation, ICRA 2008, pp. 874–879. IEEE (2008)

    Google Scholar 

  20. Mohebbi, M.H., Terry, M.L., Böhringer, K.F., Kovacs, G.T.A., Suh, J.W.: Omnidirectional walking microrobot realized by thermal microactuator arrays. In: Proc. of 2001 ASME Intern. Mech. Engin. Congress and Exposition, pp. 1–7 (2001)

    Google Scholar 

  21. Donald, B., Levey, C., McGray, C., Paprotny, I., Rus, D.: An untethered, electrostatic, globally controllable mems micro-robot. Journal of Microelectromechanical Systems 15, 1–15 (2006)

    Article  Google Scholar 

  22. Bergbreiter, S., Pister, K.: Cotsbots: an off-the-shelf platform for distributed robotics. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2, pp. 1632–1637. IEEE (2003)

    Google Scholar 

  23. Erdem, E., Chen, Y.M., Mohebbi, M., Suh, J., Kovacs, G., Darling, R., Öandhringer, K.B.: Thermally actuated omnidirectional walking microrobot. Journal of Microelectromechanical Systems 19, 433–442 (2010)

    Article  Google Scholar 

  24. Churaman, W., Currano, L., Morris, C., Rajkowski, J., Bergbreiter, S.: The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. Journal of Microelectromechanical Systems 21, 198–205 (2012)

    Article  Google Scholar 

  25. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE Transactions on Robotics 28, 457–466 (2012)

    Article  Google Scholar 

  26. Fritzson, P.: Introduction to Modeling and Simulation of Technical and Physical Systems. Wiley-IEEE Press (2011)

    Google Scholar 

  27. Vogtmann, D.E., Gupta, S.K., Bergbreiter, S.: Multi-material compliant mechanisms for mobile millirobots. In: Proceedings 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3169–3174 (2011)

    Google Scholar 

  28. Bellouard, Y.: Microrobotics: Methods and Applications. CRC Press (2010)

    Google Scholar 

  29. Otter, M., Elmqvist, H., Dí López, J.: Collision Handling for the Modelica MultiBody Library. In: Proc. of the 4th Intern. Modelica Conf., pp. 45–53 (2005)

    Google Scholar 

  30. Shin, M., Gerratt, A.P., Metallo, C., Brindle, A., Kierstead, B.P., White, R.D.: Characterization of a micromachined parylene-based thermal c-shape actuator. Journal of Micromechanics and Microengineering 21(9), 095028 (2011)

    Article  Google Scholar 

  31. Schamai, W.: Modelica Modeling Language (ModelicaML): A UML Profile for Modelica. Tech. Rep. 2009:5, Linköping University, Department of Computer and Information Science (2009)

    Google Scholar 

  32. Dymola libraries flexbody | claytex, http://www.claytex.com/products/dymola/model-libraries/flexbody-library

  33. CATIA systems engineering, http://www.3ds.com/products/catia/solutions/catia-systems-engineering

  34. SysML-Modelica Transformation (SyM), http://www.omg.org/spec/SyM/1.0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, Y., Baras, J.S. (2013). CPS Modeling Integration Hub and Design Space Exploration with Application to Microrobotics. In: Tarraf, D. (eds) Control of Cyber-Physical Systems. Lecture Notes in Control and Information Sciences, vol 449. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01159-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01159-2_2

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01158-5

  • Online ISBN: 978-3-319-01159-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics