Skip to main content

Cloud Conveyors System: A Versatile Application for Exploring Cyber-Physical Systems

  • Chapter
Control of Cyber-Physical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 449))

Abstract

We present a versatile application for cyber-physical systems (CPS), called the Cloud Conveyors System (CCS). This system comprises a collection of mobile conveyor units with simple periodic behavior; the units move back and forth along fixed tracks. The system-level objective is to transport entities from some input port to an output port when each entity has its own target output port, deadline, and end-to-end QoS constraints. Entities ride on the mobile units to physically move from one location to another. Entities may transfer instantaneously between two units — or when the unit is at an input or an output. We refer to these transfers as cyber transfers because they involve decision-making and the entities do not have to transfer at every possible opportunity. We view the transport of each entity in CCS as a CPS-Task that evolves both in space and in time; more precisely, a CPS-Task is an alternating sequence of cyber transfers and physical moves that starts at an input and ends at the output of the entity. This novel model for a CPS-Task allows one to explore solutions to some of the principal CPS challenges namely, Composition, Control Strategies, Computational Abstractions, Model-driven Engineering, and Verification & Validation. Further, this abstract and well-defined problem is useful in CPS Education and Training because it has a rich structure with intertwined cyber and physical dynamics; also, the scale and complexity of the problem can be increased by adding more units or changing the configuration of the system without increasing the implementation burden, which is critical to validating CPS solution techniques on physical testbeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: The next computing revolution. In: ACM/IEEE Design Automation Conference (2010)

    Google Scholar 

  2. Anderson, C.W.: Learning to control an inverted pendulum using neural networks. IEEE Control Systems Magazine 9(3), 31–37 (1989)

    Article  Google Scholar 

  3. Rapoport, A., Chammah, A.M.: Prisoner’s dilemma. University of Michigan Press (1965)

    Google Scholar 

  4. Chandy, K., Misra, J.: The drinking philosophers problem. ACM Transactions on Programming Languages and Systems 6(4), 632–646 (1984)

    Article  Google Scholar 

  5. Herescu, O., Palamidessi, C.: On the generalized dining philosophers problem. In: Proceedings of the Twentieth Annual ACM Symposium on the Principles of Distributed Computing, pp. 81–89 (2001)

    Google Scholar 

  6. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-time environment. ACM Journal 20(1), 46–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buttazzo, G.: Hard Real-time Computing Systems: Predictable Scheduling Algorithms and Applications. Springer (2005)

    Google Scholar 

  8. Lee, I., Leung, J.T., Son, S.: Handbook of Real-Time and Embedded Systems. CRC Press (2007)

    Google Scholar 

  9. Li, H., Baruah, S.: An algorithm for scheduling certifiable mixed-criticality sporadic task systems. In: IEEE Real-Time Systems Symposium, pp. 183–192 (2010)

    Google Scholar 

  10. Bertogna, M., Buttazzo, G., Yao, G.: Improving feasibility of fixed priority tasks using non-preemptive regions. In: IEEE Real-Time Systems Symposium, pp. 251–260 (2011)

    Google Scholar 

  11. Bertogna, M., Baruah, S.: Limited preemption edf scheduling of sporadic task systems. IEEE Transactions on Industrial Informatics 6(4), 579–591 (2010)

    Article  Google Scholar 

  12. Bertogna, M., Xhani, O., Marinoni, M., Esposito, F., Buttazzo, G.: Optimal selection of preemption points to minimize preemption overhead. In: Euromicro Conference on Real-Time Systems, pp. 217–227 (2011)

    Google Scholar 

  13. Niemeier, M., Wiese, A., Baruah, S.: Partitioned real-time scheduling on heterogeneous shared-memory multiprocessors. In: Euromicro Conference on Real-Time Systems, pp. 115–124 (2011)

    Google Scholar 

  14. Hou, I., Kumar, P.: Scheduling periodic real-time tasks with heterogeneous reward requirements. In: IEEE Real-Time Systems Symposium, pp. 282–291 (2011)

    Google Scholar 

  15. Kim, T., Poor, H.: Scheduling power consumption with price uncertainty. IEEE Transactions on Smart Grid 2(3), 519–527 (2011)

    Article  Google Scholar 

  16. Junsung, K., Karthik, L., Raghunathan, R.: Rhythmic Tasks: A New Task Model with Continually Varying Periods for Cyber-Physical Systems. In: 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems, pp. 55–64. IEEE (April 2012)

    Google Scholar 

  17. Saifullah, A., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time scheduling for generalized parallel task models. In: IEEE Real-Time Systems Symposium, pp. 217–226 (2011)

    Google Scholar 

  18. Baruah, S.: The partitioned edf scheduling of sporadic task systems. In: IEEE Real-Time Systems Symposium, pp. 116–125 (2011)

    Google Scholar 

  19. Bastoni, A., Brandenburg, B., Anderson, J.: Is semi-partitioned scheduling practical? In: Euromicro Conference on Real-Time Systems, pp. 125–135 (2011)

    Google Scholar 

  20. Branicky, M.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine, W. (eds.) Handbook of Networked and Embedded Control Systems, pp. 91–116. Birkhauser, Boston (2005)

    Chapter  Google Scholar 

  21. Kavraki, L., Švestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  22. LaValle, S., Branicky, M., Lindemann, S.: On the relationship between classical grid search and probabilistic roadmaps. International Journal of Robotics Research 23(7-8), 673–692 (2004)

    Article  Google Scholar 

  23. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research 30(7), 846–894 (2011)

    Article  Google Scholar 

  24. Bhatia, A., Maly, M., Kavraki, L., Vardi, M.: Motion planning with complex goals. IEEE Robotics & Automation Magazine 18(3), 55–64 (2011)

    Article  Google Scholar 

  25. Branicky, M., Curtiss, M., Levine, J., Morgan, S.: RRTs for nonlinear, discrete, and hybrid planning and control. In: Proc. IEEE Conference on Decision and Control, Lahaina, HI (December 2003)

    Google Scholar 

  26. Branicky, M., Curtiss, M., Levine, J., Morgan, S.: Sampling-based planning, control, and verification of hybrid systems. IEE Proceedings on Control Theory and Applications 153, 575–590 (2006)

    Article  Google Scholar 

  27. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

    Google Scholar 

  28. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  29. Roozbehani, H., D’Andrea, R.: Adaptive highways on a grid. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 661–680. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Enright, J.J., Wurman, P.R.: Optimization and coordinated autonomy in mobile fulfillment systems. In: Workshop on Automated Action Planning for Autonomous Mobile Robots, San Francisco, Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  31. Coltin, B., Manuela Veloso, R.V.: Dynamic user task scheduling for mobile robots. In: Workshop on Automated Action Planning for Autonomous Mobile Robots, San Francisco, Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  32. Klavins, E.: Automatic synthesis of controllers for distributed assembly and formation forming. In: Proc. IEEE International Conference on Robotics and Automation (2002)

    Google Scholar 

  33. Arsie, A., Frazzoli, E.: Efficient routing of multiple vehicles with no explicit communications. International Journal of Robust and Nonlinear Control 18(2), 154–164 (2007)

    Article  MathSciNet  Google Scholar 

  34. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing for robotic systems. Proceeedings of the IEEE (2010)

    Google Scholar 

  35. Como, G., Savla, K., Acemoglu, D., Dahleh, M., Frazzoli, E.: Distributed robust routing policies for dynamical flow networks. IEEE Trans. Automatic Control (2010)

    Google Scholar 

  36. Pavone, M., Frazzoli, E., Bullo, F.: Adaptive and distributed algorithms for vehicle routing in a stochastic and dynamic environment. IEEE Transactions on Automatic Control (2010)

    Google Scholar 

  37. Smith, S., Pavone, M., Bullo, F., Frazzoli, E.: Dynamic vehicle routing with priority classes of stochastic demands. SIAM Journal Control and Optimization 48(5), 3224–3245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Archer, B., Sastry, S., Rowe, A., Rajkumar, R.: Profiling primitives of networked embedded automation. In: IEEE Conference on Automation Science and Engineering (2009)

    Google Scholar 

  39. Cheerala, C., Sastry, S., Sastry, P.S.: Learning automata based online input-rate control for composable conveyor systems. In: Centenary Conference of the Electrical Engineering Department, Indian Institute of Science (2011)

    Google Scholar 

  40. Morris, T., Ghosh, A., Ferrara, M., Gethner, E., Branicky, M.S., Sastry, P.S., Sastry, S.: Characterizing spatio-temporal pattern of events in a cloud conveyor system. In: IEEE Conference on Automation Science and Engineering (submitted, 2013)

    Google Scholar 

  41. Gokhale, A., Biswas, G., Sarkar, N., Sastry, S., Branicky, M.S.: CPS-Laboratory-as-a-Service: Enabling technology for readily accessible and scalable CPS education. In: First Workshop on Cyber Physical Systems Education, CPSWeek (2013)

    Google Scholar 

  42. An, K., Trewyn, A., Gokhale, A., Sastry, S.: Model-driven Performance Analysis of Reconfigurable Conveyor Systems used in Material Handling Applications. In: Second IEEE/ACM International Conference on Cyber Physical Systems (ICCPS 2011), pp. 141–150. IEEE, Chicago (2011)

    Chapter  Google Scholar 

  43. Eswaran, A., Rowe, A., Rajkumar, R.: nano-RK: An energy aware resource-centric operating system for sensor networks. In: IEEE Real - Time Systems Symposium (December 2005)

    Google Scholar 

  44. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Press (2004)

    Google Scholar 

  45. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems (2012), http://arXiv:1204.5721

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar Sastry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sastry, S., Branicky, M.S., Sastry, P.S. (2013). Cloud Conveyors System: A Versatile Application for Exploring Cyber-Physical Systems. In: Tarraf, D. (eds) Control of Cyber-Physical Systems. Lecture Notes in Control and Information Sciences, vol 449. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01159-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01159-2_3

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01158-5

  • Online ISBN: 978-3-319-01159-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics