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Abstract. With the emerging of new networks, such as wireless sensor
networks, vehicle networks, P2P networks, cloud computing, mobile In-
ternet, or social networks, the network dynamics and complexity expands
from system design, hardware, software, protocols, structures, integra-
tion, evolution, application, even to business goals. Thus the dynamics
and uncertainty are unavoidable characteristics, which come from the
regular network evolution and unexpected hardware defects, unavoidable
software errors, incomplete management information and dependency re-
lationship between the entities among the emerging complex networks.
Due to the complexity of emerging networks, it is not always possible
to build precise models in modeling and optimization (local and global)
for networks. This paper presents a survey on probabilistic modeling for
evolving networks and identifies the new challenges which emerge on the
probabilistic models and optimization strategies in the potential appli-
cation areas of network performance, network management and network
security for evolving networks.
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1 Introduction

It is recognized that three laws, Moore’s law, Gilder’s law and Metcalfe’s law,
which are governing the spread of technology and are related to the rapid evo-
lution of IT networks [I0]. Moore’s law indicates the computing capability of
computers doubles every 18 months. Gilder’s law claims the total bandwidth of
communication systems triples every 12 months for the next 25 years. Metcalfe’s
law presents the value of a telecommunications networks is proportional to the
square of the number of connected users of the systems (n?).

The typical evolution in networks is paralleled with following changes: the
improved/degraded hardware performance, updated software (system software,
application software) and its functions, extended network structure with the in-
tegration of emerging heterogeneous networks (mobile communication networks,
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sensor networks, ad hoc networks, vehicle networks, overlay networks, and In-
ternet of Things), extension of network scale with increasing wired/mobile and
wireless devices joined, updated network protocols, improved network functions
(from information exchanging to complex online transaction and numerous ser-
vices), dynamic functional evolution, variation of the network performance, and
emerging network applications and network services.

The evolution of networks is not only on physical networks, but also on in-
formation networks and service networks, which is over physical networks. In
real I'T application scenarios, the evolution is characterized with the combina-
tional evolving results on physical networks, information networks and service
networks.

The evolving networks demonstrate the complex changes in network struc-
ture, network functions, network performance, and interoperation relationship
with the time evolving, and thus more opportunistic networks and self-organizing
networks come into being one trend of the network evolution. The emerging com-
puting models (distributed computing, pervasive computing, cognitive comput-
ing, opportunistic computing, scalable computing, autonomic computing, phys-
ical computing, and probabilistic computing), which are employed to model and
manage the complex dynamic networks and pertain to the operation, adminis-
tration, maintenance, and provision of networked systems for secure (reliable)
and effective network performance [I1].

The dynamics and uncertainty are unavoidable characteristics, which come
from the regular network evolution and unexpected hardware defects, unavoid-
able software errors, incomplete management information and dependency rela-
tionship between the entities among the emerging complex networks. Due to the
complexity of emerging networks, it is not always possible to build precise mod-
els in modeling and optimization (local and global) for networks. New challenges
emerge on the probabilistic models and optimization strategies in the areas of
network performance, network management, network security for evolving IT
networks.

This paper presents a systematic survey on the probabilistic modeling for
evolving networks and identifies the new challenges which emerge on the proba-
bilistic models and optimization strategies in the potential application areas of
network performance, network management and network security for evolving
networks.

2 Emerging characteristics in evolving networks

The evolving IT networks demonstrate emerging characteristics as follows:

1. Dynamics

— Some networks are running in dynamic style by nature, such as mobile
communication networks, wireless sensor networks, vehicle networks, and
overlay networks (P2P, VPN). These networks can be organized as op-
portunistic networks or self-organizing networks. That means the struc-
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ture of the networks is changing over the topology, with the variation on
routers, mobile servers and mobile clients.

— The performance (robustness) of individual network components, such
as routers, servers, clients or other key network devices/services vary
with the network evolution. Some components are improved or degraded
with the hardware performance, technical improvement, or systematic
evolution.

— The performance (robustness) of the individual links, which demonstrate
the dependencies between main network components, changes with the
structural or functional modification of the networks.

— Both local and global changes are interdependent. That means any local
changes may result in the variation of global network performance. Any
global modification can result in the changes in local network perfor-
mance as well.

— Theoretically, the network function and structure have strong interde-
pendence [22]. The evolving structure of networks will bring the changes
in network functions. On the other side, it is possible that network func-
tion modification can result in the redesign/reconfiguration of network
structure.

2. Heterogeneity
In IT networks, there are 2 types of heterogeneous networks, integrated
networks and overlay networks.

— Integrated networks
With the advances of emerging networks, more heterogeneous networks
are integrated. For example, the sensor networks are integrated with local
networks, vehicle networks join mobile communication networks, hetero-
geneous network devices are integrated into Internet, and the trend of In-
ternet of Things emerges. The heterogeneous network integration demon-
strates the integration of different structures, different functions, differ-
ent performance, different network protocols, different software compo-
nents, and even different services. Integrated networks are not only the
accumulation of networks, but also updated properties and functions
merging with the evolution.
— Overlay networks

An overlay network is a computer network which is built on the top of
another network. Nodes in the overlay networks can be connected by
virtual or logical links, each of which corresponds to a path, perhaps
through many physical links, in the underlying networks. Information
networks and service networks based on the physical networks are com-
monly identified as overlay networks as well. Overlay networks organize
peers with different strategies, thus their topology and routing perfor-
mance are different. The consequent reliability and fault resiliency varies
as well [16]. Overlay networks are organized by spontaneous and dynamic
connectivity between users/clients, this evolution model is accompanied
with the continuing structure dynamics.
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. Temporal Networks

Evolving is a time correlated process. The evolving network structure, de-
scribing how the network is wired and how the abstract nodes are connected,
helps us to understand, predict and optimize the behaviour of dynamic net-
works. In many cases, however, the edges/links are not continuously active.
In some cases, edges/links are active for non-negligible periods of time. Like
network topology, the temporal structure of edge activations can affect dy-
namics of systems interaction through the network. The dynamic weights,
which indicate the interdependencies between networks components, demon-
strate the network evolving process as well. An evolving networks is a typical
temporal network, which can be modelled to elucidate the behaviour of a dy-
namic system. The fundamental properties in temporal networks are quite
different from those for static networks.

. Complexity

Complexity has an important relationship to resilience and the robustness of
systems, because resilience mechanisms such as self-organization and auto-
nomic behaviour increase complexity, and increased complexity may result in
greater network vulnerability [24]. The complexity in evolving IT networks
comes from structural complexity, network evolution, connection diversity,
dynamical complexity, nodes diversity, meta-complication. Furthermore, the
various complications can influence each other.

. Macro view vs. micro view

In evolving complex networks, self-organizing processes are deployed at mul-
tiple levels. Challenging questions about the dynamics of micro-macro tran-
sition include: (i) how are emergent properties related to micro interactions?
(ii) how can we reverse-engineer the mechanics of complex system from their
behaviour under a controlled set of external stimuli? Thus the interrela-
tionship between micro and macro behaviour in evolving networks is rather
important in application scenarios.

. Probability

In evolving network, the system dynamics and the intrinsic complexity make
the complex networks with probabilistic properties. The incomplete and un-
certain information need to be integrated into the research models, so that
the system models can be more reasonable and realistic [9]. Thus the time
based probabilistic factors should be embedded into the network modeling
in evolving networks.

Challenges for probabilistic modeling

. Structure dynamics
In IT networks, the structure evolving is paralleled with the changes on:

— Network nodes: New nodes (network hardware/software components) are
added or removed from the network, or the improvement/degradation in
the performance of nodes.



Challenges on Probabilistic Modeling for Evolving Networks 5

— Network links: New links (interoperation/interdependency) are added
or removed from the network, or the improvement/degradation in the
performance of links.

— Weight of the dependencies: The weight of the dependencies between
network components indicates the measurement of the importance on
the performance or dependencies among the related components. It is a
time related function during the evolution.

Two types of dynamics are required in order to fully understand how net-
works evolve over time. The type of dynamics most commonly used in IT
network analysis are those dealing with the nature of interactions between
nodes as a consequence of the network structure, which is called dynam-
ics on the network. This category governs how nodes react to each other
based on the overall structure of the network. The second type of network
dynamics, named dynamics of the network, governs the changes in the
network structure and evolution of the structure.

There are three approaches to model the dynamic networks:

— The evolution of a network can be described as a sequence of static
networks and since there exist many parameters to describe accurately a
static network, one can study the evolution of the network through the
evolution of these parameters.

— The evolution itself can be studied with defined parameters to capture
the evolving properties, such as the rate of appearance or disappearance
of nodes and edges.

— An intermediate approach can be used which consists specific phenomena
in studying or users of interest with time.

The approach selection is based on the specific scenario. For example, if the
network structure keeps stable and with minor modification, the sequence
snapshot of the static networks can be considered as an appropriate evolving
model. The network infrastructure and network backbone follow this class.
But suppose the network structure evolves with great changes, and then the
parameter modelling or intermediate approach might be appropriate. Mobile
communication networks, sensor networks, vehicle networks belong to this
class.

In modelling the evolving networks, not only the structure properties (topolo-
gies, nodes, and links) are included, but also the non-structural properties
(weights, importance, functions) should be considered. It is also a challenge
to model the dynamic structure and evolving properties in integrated het-
erogeneous network and overlay networks.

. Stochastic dynamics

Along the network evolution, some changes will generate new data charac-
teristics which might not to be the property of the historical data. Generally,
the building process of the network and the parameter estimation requires
more data as the number of variables varies, as long as the accuracy in the
estimations and in the network topology is to be maintained. However, the
network evolution is not necessarily to maintain the accuracy in the param-
eter estimation because of the unstable and dynamic properties. There is
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some difficulties in obtaining a stable historical data for an evolving network
on application scenarios.

. Model of heterogeneous networks

Evolving networks are composed of heterogeneous networks in network struc-
tures and functions. This will make the integrated network model more com-
plex, since some unbalanced and heterogenous network sections are not inte-
grated consistently in following unique or common principles in the structure
and the functions.

. Relationship between macro and micro networks

For a large scale heterogeneous network, the macro characteristics are strongly
related to the micro pieces of the network and vice versa. When modeling the
global probabilistic network, the local subnets modeling and their merging
style between pieces are rather important, in which the interdependencies
can be identified and measured reasonably. However, large scale complex
networks demonstrate new properties which is hard to be identified from
micro networks, such as small world property, scale free network, etc.

. Control and feedback

In modeling network application and services, the control and feedback loop
is inevitable at different levels, particularly in logical and service networks.
The loops among networks are apt to make the related modeling out of
control. The overlap (repeat) dependencies vague the relationship between
the networked components.

. Computing complexity

The complexity in emerging networks makes medium size models usually
intractable, since the number of variables involved is greater than in static
models. Highly connected networks and dynamic changes among the network
structure and dependencies between related components make the evolving
networks total complex dynamic systems, and thus brings very challenging
problems in computing complexity.

. Probabilistic factors

The dynamic and complex network behaviours inevitable brings probabilis-
tic factors to the evolving networks. Thus probabilistic factors should be
included in the models of evolving networks. The combination of probabilis-
tic models and complex network model challenges the modelling of dynamic
evolving networks.

4 Probabilistic Modeling for Dynamic Networks

The goal of modelling for evolving networks is to model the state of a system and
its evolution over time in a richer and more natural way. It is widely recognized
that probabilistic graphical models provide a good framework for both knowledge
representation and probabilistic inference for dynamic evolving networks.

A probabilistic dynamic model will be considered as a sequence of graphs in-

dexed by the time, representing the temporal evolution of a system. Each graph
symbolizes the state of the system and the dependencies among its components
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at a given time. The dynamic behaviour of the components of the system is de-
scribed by a set of temporal dependencies among these components in different
time slices. Furthermore, these dependencies are quantified by conditional prob-
ability tables associated with the components of the system. In order to make
the management of such models feasible, a set of restrictions must be considered
for both its qualitative and quantitative aspects.

4.1 Dynamic Graphs

The dynamic behaviour of any specific system which changes over time requires
an implicit or explicit time representation. To model such systems is a very im-
portant task: the initial structure of the model and its propagation over time,
the probabilities attached to the structure, the qualitative and quantitative in-
terrelations among variables in different time slices, etc., need to be taken into
account [18].

Basically, a network can be modelled as a graph, which includes essential
elements: nodes, links, and weighs on links or/and nodes.

A graph can be defined as a triple (V, E, fv, fg) where V is a set of vertexes,
FE is a set of edges u, v, and f is a function, fy : V — N, fg : E — N, where N
is some number system, assigning a value or a weight. Depending on the context,
the weights may be real numbers, complex numbers, integers, elements of some
group, etc. A network or fully weighted graph has weights assigned to both nodes
and edges.

These definitions of (static) graphs and networks involve the following enti-
ties: V' (a set of nodes), E (a set of edges), fy (mapping vertexes to numbers),
fE (mapping edges to numbers). A dynamic graph is obtained when any of these
four entities changes over time. Thus, there are several basic kinds of dynamic
graphs.

— in a node-dynamic graph or digraph, the set V varies with time. Thus, some
nodes may be added or removed. When nodes are removed, the edges incident
with them are also eliminated.

— in an edge-dynamic (or arc-dynamic) graph or digraph, the set E varies with
time. Thus, edges may be added or deleted from the graph or digraph.

— in a node weighted dynamic graph, the function fi, varies with time; thus,
the weights on the nodes also change.

— in an edge weighted dynamic graph or digraph, the function fg varies with
time.

— in fully weighted dynamic graph, both functions fy and frp may vary with
time.

Thus a dynamic graph is defined as a triple with time parameter ¢: (V*, E*, ft,, ft.).

Harary classifies the dynamic graphs by the change of any of these [14]:

1. Node dynamic graphs where the vertex set VV* changes over time ¢.
2. Edge dynamic graphs where the edge set E* change over time ¢.
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3. Node weighted dynamic graphs where the f{, function varies with time ¢.
4. Edge weighted dynamic graphs where the f% function varies with time ¢.

All combinations of the above types can occur. For example, a computer net-
work with changing bandwidth (edge-weight), changing topology (edges being
added or deleted), changing computing power (node-weights changing), and com-
puters representing nodes crashing, and recovering represents a dynamic graph
that entails all the above basic types.

Work on dynamic graph theory have been motivated by finding patterns
and laws. Power laws, small diameters, shrinking diameters have been observed.
Graph generation models that try to capture these properties are proposed to
synthetically generate such networks [5]. There are several problems to be an-
swered in these complex dynamic networks.

— Is the network evolving normally?
— What is normal behaviour of the network?
— Is there a phase transition along the network evolving?

There is a strong correlation between finding patterns in static graphs and
dynamic evolving graphs.

Graph similarity functions, which is used to measure the degree of the dy-
namics on networks, are categorized into two groups:

— feature based similarity measures
— structure based similarity measures

Using the topology of the graphs, two similarity metrics have been defined,
maximum common subgraph distance and the graph edit distance.

Graph clustering has become a central tool for the analysis of dynamic net-
works in general, with applications ranging from the field of social sciences to
biology and to the growing field of complex systems. The general aim of graph
clustering is to identify dense subgraphs in networks. Countless formalizations
thereof exist, however, the overwhelming majority of algorithms for graph clus-
tering relies on heuristics, e.g., for some NP-hard optimization problem, and do
not allow for any structural guarantee on their output.

4.2 Power Law Random Graphs

Random graphs can date back to the work of Erdés and Rényi for the theory
of random graphs [12]. The random graph model G(n,e) assigns uniform prob-
ability to all graphs with n nodes and e edges while in the random graph model
G(n,p) each edge is chosen with probability p.

Power law random graph model [2] is an extension of random graph, whose
degree distribution follows a power law. Most of IT network system have this
properties. Power law rand graph model has two parameters. The two parameters
only roughly delineate the size and density but they are natural and convenient
for describing a power law degree sequence. The power law random graph model
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P(a, B) is described as follows. Let y be the number of nodes with degree x.
P(a, ) assigns uniform probability to all graphs with y = e®/2” (where self
loops are allowed). Note that « is the intercept and f is the (negative) slope
when the degree sequence is plotted on a log-log scale.

There is also an alternative power law random graph model analogous to
the uniform graph model G(n, p). Instead of having a fixed degree sequence, the
random graph has an expected degree sequence distribution. The two models
are basically asymptotically equivalent, subject to bounding error estimates of
the variances.

The power law random graph model provides an approach to model the
dynamic evolving complex networks. However, there are some questions that
remain to be resolved. For example, what is the effect of time scaling? How does
it correspond with the evolution of 87 What are the structural behaviours of the
power law random graphs?

4.3 Dynamic Flowgraph Methodology

The dynamic flowgraph methodology (DFM) [6] is an approach to model and
analyze the behaviour of dynamic systems for reliability /safety assessment and
verification. DFM models express the logic of the system in terms of causal rela-
tionships between physical variables and states of the system. The time aspects
of the system (execution of control commands, dynamics of the process) are
represented as a series of discrete state transitions. DFM can be used for iden-
tifying how certain postulated events may occur in a system. The result is a set
of timed fault trees, whose prime implicants (multi-state analogue of minimal
cut sets) can be used to identify system faults resulting from unanticipated com-
binations of software logic errors, hardware failures, human errors and adverse
environmental conditions.

DFM models are directed graphs, analyzed by discrete time instances. They
consist of variable and condition nodes; causality and condition edges; and trans-
fer and transition boxes and their associated decision tables. A node represents a
variable that can be in one of a finite number of predefined states. The state of a
node can change at discrete time instances. The state of the node is determined
by the states of its input nodes. Each node can have several inputs but only one
output (its state). The state of the node can act as an input to possibly several
other nodes. The state of a node at time ¢ is determined by

— the states of its input nodes at a single instance of time (say, t — n),
— the lag n, an integer that tells how many time instances it takes for an input
to cause the state of the present node.

The state of a node, as a function of the states of its input nodes, is deter-
mined by a decision table. A decision table is an extension of the truth table
where each variable can be represented with any finite number of states. The de-
cision table contains a row for each possible combination of input variable states.
The maximum possible number of rows in the decision table is the product of
the numbers of states of the input nodes.
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After construction, the DFM model can be analyzed in two different modes,
deductive and inductive. In inductive analysis, event sequences are traced from
causes to effects; this corresponds to simulation of the model. In deductive anal-
ysis, event sequences are traced backward from effects to causes.

A deductive analysis starts with the identification of a particular system
condition of interest (a top event); usually this condition corresponds to a failure.
To find the root causes of the top event, the model is backtracked for a predefined
number of steps through the network of nodes, edges, and boxes. This means
that the model is worked backward in the cause-and-effect flow to find what
states of variables (and at what time instances) are needed to produce the top
event. The result of a deductive analysis is a set of prime implicants.

A prime implicant consists of a set of triplets (V,S,T); each triplet tells
that variable V is in a state S at time 7. The circumstances described by the
set of triplets cause the top event. Prime implicants are similar to minimal cut
sets of fault tree analysis, except that prime implicants are timed and they deal
with multi-valued variables (fault trees deal with Boolean variables). A useful
analogy is that deductive analysis corresponds to minimal cut set search of a
fault tree. Once primary implicants have been found, the top event probability
can be quantified in a fault tree.

For large scale dynamic networks, the state analysis and the fault propagation
among dynamic networks make the resolution intangible with huge computing
complexity.

4.4 Dynamic Factor Graphs

Directed and undirected networks coexist in most IT networks. For large net-
works (graphs), the factorization properties of a graphical model, whether undi-
rected or directed, may be difficult to visualize from the usual depictions of
graphs. The formalism of factor graphs provides an alternative graphical repre-
sentation, one which emphasizes the factorization of the distribution.

Let F represent an index set for the set of factors defining a graphical model
distribution. In the undirected case, this set indexes the collection C of cliques,
while in the directed case F' indexes the set of parent-child neighborhoods. We
then consider a bipartite graph G = (V, E, F'), where V is the original set of
vertexes, and E is a new edge set, joining only vertexes s € V' to factors a € F'.
In particular, edge (s,a) € E if and ouly if x5 participates in the factor indexed
by a € F.

For undirected models, the factor graph representation is of particular value
when C' consists of more than the maximal cliques. Indeed, the compatibility
functions for the nonmaximal cliques do not have an explicit representation in
the usual representation of an undirected graph. However, the factor graph makes
them explicit.

Time series collected from real-world phenomena are often an incomplete
picture of a complex underlying dynamical process with a high-dimensional state
that cannot be directly observed.
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The simplest approach to modeling time series relies on time-delay embed-
ding: the model learns to predict one sample from a number of past samples with
a limited temporal period. This method can use linear auto-regressive models, as
well as non-linear ones based on kernel methods (e.g. support-vector regression),
neural networks (including convolutional networks such as time delay neural net-
works), and other non-linear regression models. Unfortunately, these approaches
have difficult in capturing hidden dynamics with long-term dependency because
the state information is only accessible indirectly through a (possibly very long)
sequence of observations [7].

To capture long-term dynamical dependencies, the model must have an in-
ternal state with dynamical constraints that predict the state at a given time
from the states and observations at previous times (e.g. a state-space model).
In general, the dependencies between state and observation variables can be ex-
pressed in the form of a Factor Graph for sequential data, in which a graph motif
is replicated at every time step.

For a complex and non-linear system, a model might allow the use of complex
functions to predict the state and observations, and will sacrifice the probabilistic
nature of the inference. Instead, the inference process (including during learning)
will produce the most likely (minimum energy) sequence of states given the
observations. Dynamic Factor Graph (DFG) is a natural extension of Factor
Graphs specifically tuned for sequential data. To model complex dynamics, DFG
allows the state at a given time to depend on the states and observations over
several past time steps.

Dynamical Factor Graphs manage to perfectly reconstruct multiple oscilla-
tory sources or a multivariate chaotic attractor from an observed one-dimensional
time series. DFGs also outperform Kalman Smoothers and other neural net-
work techniques on a chaotic time series prediction tasks, DFGs can be used
for the estimation of missing motion capture data. Proper regularization such
as smoothness or a sparsity penalty on the parameters enable to avoid trivial
solutions for high-dimensional latent variables [19].

4.5 Time-varying Graphs

Time-varying graphs (TVG) have been a topic of active research recently in
the study of communication networks with intermittent connectivity such as
delay-tolerant networks and even disruption-tolerant social networks; duty cy-
cling wireless sensor networks, and so on. Existing research on time-varying
graphs ranges from algorithmic studies on graph journeys to analysis of spe-
cific properties such as flooding time in dynamic random graphs. Empirical
simulation-based analysis of certain temporal graph properties such as temporal
distance and temporal efficiency are hot topics in this area.

The TVG can describe a multitude of different scenarios, from transportation
networks to communication networks, complex systems, or social networks. Some
research questions are generated by the application requirements in dynamic
networks.
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One important task is to explore the universe of dynamic networks using the
formal tools provided by the TVG formalism. The long-term goal is to provide
a comprehensive map of this universe, to identify both the commonality and the
natural differences between the various types of dynamical systems modeled by
TVG [§].

The design and analysis of distributed algorithms and protocols for time-
varying graphs is an open research area. In fact very few problems have been
attacked so far: routing and broadcasting in delay-tolerant networks; broadcast-
ing and exploration in opportunistic-mobility networks; new self-stabilization
techniques; detection of emergence and resilience of communities, and viral mar-
keting in social networks.

If the interactions in a network can be planned and decided by a designer,
then a number of new interesting optimization problems arise with the design
of time-varying graph. They may concern, for example, the minimization of the
temporal diameter or the balancing of nodes eccentricities.

Analyzing the complexity of a distributed algorithm in a TVG , e.g. in num-
ber of messages, is not trivial, partly because contrarily to the static cases, the
complexity of an algorithm in a dynamic network has a strong dependency, not
only on the usual network parameters (number of nodes, edges, etc.), but also
on the number of topological events taking place during its execution. In many
of the algorithms, the majority of messages is in fact directly triggered by topo-
logical events, e.g., in reaction to the local appearance or disappearance of an
edge. The number of topological events therefore represents a new complexity
parameter, whose impact on various problems remains to study.

Through the use of the interaction-centric point view, TVGs enable to look
at the interplay between topological aspects that allow local interaction to have
global effects.

4.6 Dynamic Bayesian Networks

Dynamic Beyesian Networks (DBN), which is an extension of causal probabilistic
networks [4] and static Bayesian networks, is to model a system that is dynam-
ically changing or evolving over time. This model will enable users to monitor
and update the system as time proceeds, and even predict further behaviour of
the system. In every time slice of a temporal model corresponds to one particular
state of a system, and if the movement between the slices reflects a change in
state instead of time.

Dynamic Beyesian Networks are usually defined as special case of singly
connected Bayesian networks specifically aimed at time series modelling.

All the nodes, edges and probabilities that form static interpretation of a
system is identical to a Bayesian network. Variables can be denoted as the sate
of a DBN, because they include a temporal dimension. The states of any system
described as a DBN satisfy the Markovian condition, that is defined as follows:
The sate of a system at time ¢ depends only on its immediate past, i.e. its state
at time ¢t — 1. Also, this property is frequently considered as a definition of First
order Markov property: the future is independent of the past given the present.
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The states of a dynamic model do not need to be directly observable. They may
influence some other variables that we can directly measure or calculate. Also,
the state of some system needs not to be a unique, simple state. It may be
regarded as a complex structure of interacting states. Each state in a dynamic
model at one time instance may depend on one or more states at the previous
time instance or/and on some states in the same time instance [21]. So, in DBN
states of a system at time ¢ may depend on system states at time ¢ — 1 and
possibly on current states of some other nodes in the fragment of DBN structure
that represents variables at time ¢.

It is not easy to model time and uncertainty in a way that clearly and ad-
equately represents the problem domains at hand. Related approaches can be
classified into three broad categories:

— Models that use static BNs and formal grammars to represent temporal
dimension (known as Probabilistic Temporal Networks)

— Models that use mixture of probabilistic and non-probabilistic frameworks

— Models that introduce temporal nodes into static BNs structure to represent
time dependence.

By using a DBN, we assume that dynamic data are generated sequentially
by some hidden states of a dynamic factor evolving over time. Since the hidden
states cannot be observed directly, they can only be inferred from the observed
data given a learned DBN. Learning a DBN involves estimating both its struc-
ture and parameters from data [25]. The structure of a DBN refers primarily
to (1) the number of hidden states of each hidden variable in a model and (2)
the conditional dependence among hidden states of all the hidden variables of a
model, i.e, factorization of the model state space for determining the topology
of a graph network. There have been extensive studies in the machine learn-
ing community on efficient parameter learning when the structure of a model is
known a priori. Mixed atemporal and temporal independence relations among
DBN models is examined as well [I5]. However, much less efforts have been made
to tackle the more challenging problem of learning the optimal structure of an
unknown DBN. As a consequence, most previous DBN-based data modelling ap-
proaches avoid the structure learning problem by setting the structure manually.
However, it has been shown that a learned structure can be advantageous over
those that are manually set [13].

DBNs represent the state of the world as a set of variables, and model the
probabilistic dependencies of the variables within and between time steps. While
a major advance over previous approaches, DBNs are still unable to compactly
represent many real-world domains. In particular, domains can contain multiple
objects and classes of objects, as well as multiple kinds of relations among them;
and objects and relations can appear and disappear over time. Capturing such
a domain in a DBN would require exhaustively representing all possible objects
and relations among them. This raises two problems. The first one is that the
computational cost of using such a DBN would likely be prohibitive. The second
one is that reducing the rich structure of the domain to a very large “flat” DBN
would render it essentially incomprehensible to human beings [20].
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4.7 Probabilistic Complex Networks

The term of “complex network” is usually used for referring the natural net-
works that are usually complex and cannot be modeled just through random
graphs. Most real-world networks have these complex topological features, such
as, heavy-tail in the degree distribution, high clustering coefficient, assortativity
or disassortativity among vertexes, inherent multiparty structure, self-similar hi-
erarchical structure, etc. Clustering coeflicient represents the ratio of a network
that satisfies your friends are also mutually friends. The assortativity represents
the grouping of nodes. Inherent multiparty structure indicates that there exists
many intrinsic multiparty properties in the real world.

On the contrary, simple networks usually have these properties. For instance,
they can be represented by graphs such as a lattice or random graph. The topo-
logical structure is roughly the same in any part of network. And, they do not
posses the above complex network features. Examples of complex networks in-
clude social networks, computer networks, biological networks - neurons, or pro-
tein structure, river networks, power-line networks, etc.

A probabilistic complex network can be defined as a set of probabilistic nodes
and probabilistic edges in a network topology which follows the characteristics
of complex networks, such as power-law of the degree distribution of nodes and
the small world phenomenon which specifies the shortest path between any two
nodes are generally small. The network topology can be represented by setting
the probabilities to zero in some of the edges at a completely connected network.
A probabilistic node means there are possibly either discrete states or continuous
value (or attribute vector) in the node. Similarly, a probabilistic edge represents
that the discrete state or value of edges is probabilistic [17].

In a probabilistic complex network, there should be causal relationships be-
tween the states/values of nodes and edges. This is the biggest difference between
a probabilistic complex network and a random graph. The inter-nodes, inter-
edges, and nodes-edges state relationships can be determined by a deterministic
or probabilistic model by some pre-specified rules. When defining dynamic prob-
abilistic complex network as a probabilistic complex network, evolves over time
will be considered. The probably distributions of nodes and edges can be differ-
ent at any sampled time. For simplicity, in IT networks, we only consider the
discrete cases for probabilistic complex networks.

Many real-life network systems (such as Internet, WWW, etc.) can be mod-
eled as probabilistic complex networks of interacting components. Although the
study of such large scale networks is not new, there has recently been much
renewed interest in this field. This is due to technological advances of two types:
(i) the collection of data which depict large networks in detail, and (ii) the devel-
opment of computational tools for the analysis of data. Among the well-studied
examples of such networks are the World Wide Web, citation networks, neuronal
connections, metabolic networks, ecological webs and more [1I] .

Traditional Erdés and Rényi random graph models have possion degree distri-
butions. However, it has been found that many real life networks follow power law
distributions. Generalized random graph models have been proposed to mimic
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the power law degree distribution of the real networks but these models do not
explain how such a phenomena occurs in these graphs. Barabasi et al.[3] in-
troduced a model (BA Model) the concept of preferential attachment for this
purpose.

The BA model is an algorithm for generating random scale-free networks
using a preferential attachment mechanism. Scale-free networks are widely ob-
served in natural and human-made systems, including the Internet, the world
wide web, citation networks, and some social networks.

The network begins with an initial network of mg nodes (mg > 2) and the
degree of each node in the initial network should be at least 1, otherwise it will
always remain disconnected from the rest of the network. New nodes are added
to the network one at a time. Each new node is connected to existing nodes
with a probability that is proportional to the number of links that the existing
nodes already have. Formally, the probability p; that the new node is connected
to node ¢ is

= o 1)

iFj

where k; is the degree of node i and the sum is made over all preexisting nodes
Jj. Heavily linked nodes (“hubs”) tend to quickly accumulate even more links,
while nodes with only a few links are unlikely to be chosen as the destination
for a new link. The new nodes have a “preference” to attach themselves to the
already heavily linked nodes.

Follow the BA model, there are two types of sub-models:

Di

— Model A retains growth but does not include preferential attachment. The
probability of a new node connecting to any pre-existing node is equal. The
resulting degree distribution in the limit is geometric [23], indicating that
growth alone is not sufficient to produce a scale-free structure.

— Model B retains preferential attachment but eliminates growth. The model
begins with a fixed number of disconnected nodes and adds links, prefer-
entially choosing high degree nodes as link destinations. Though the de-
gree distribution early in the simulation looks scale-free, the distribution is
not stable, and it eventually becomes nearly Gaussian as the network nears
saturation. So preferential attachment alone is not sufficient to produce a
scale-free structure. The failure of models A and B to lead to a scale-free
distribution indicates that growth and preferential attachment are needed
simultaneously to reproduce the stationary power-law distribution observed
in real networks [1J.

In modelling probabilistic complex networks, still some challenges forward:

. Finding dynamic community structures in a probabilistic complex networks,

. Investigating appropriate classification techniques,

. Applying on various practical datasets,

. Processing large datasets,

. Investigating the probabilistic approach to do information classification and
network topology learning.

T W N~
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5 Conclusions

With the evolution in network structures and the applications, more require-
ments are generated for the modelling of probabilistic dynamic networks. The
challenges include structure dynamics, probabilistic factors, heterogeneous net-
works, control and feedback, computing complexity, etc. There are several ap-
proaches in modelling the dynamic and probabilistic factors and holistic evolv-
ing networks, such as dynamic graph, power law random graph, dynamic flow-
graph method, dynamic factor graphs modeling, time-varying graphs, dynamic
Bayesian Networks, probabilistic complex network modelling. However, most of
the approaches are linked to application scenarios and focus on specific dynamic
systems and on particular dynamic behaviours. There is no common approach
available to deal with the various dynamics among the evolving networks.

Based on the observation and requirements on empirical research, the follow-
ing topics are deserved for detailed investigation:

— dynamic properties of the network should be identified. This includes the
network structure changes, the scale, degree and speed of the changes among
networks;

— the direct/indirect (hidden) factors, which contribute to the network evolv-
ing, should be traced and identified;

— the trend/principle of the evolving should be identified with appropriate
approaches and try to make the future status of the evolving networks be
predictable. This mainly depends on specific application scenarios (datasets);

— local (micro) and global (macro) changes on evolving networks should be
distinguished and synthesized, so that the dynamics of the evolving networks
can be examined systematically;

— control and optimization on dynamic networks is important issues to adjust
the network performance;

— the computing complexity should be controllable and feasible, particularly
in dealing with large scale and probabilistic data.

Thus more and efficient approaches and strategies should be developed to re-
solve the challenging problems and to improve the dynamic modelling of modern
evolving networks.
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