Skip to main content

Face Recognition Based on Representation with Reject Option

  • Conference paper
Genetic and Evolutionary Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 238))

  • 1787 Accesses

Abstract

In this paper, we proposed a method for face recognition with reject option. First, by setting a threshold, we use sparse representation (SR) method to find out candidates who should be rejected, and choose their nearest neighbors in the training set based on contribution in SR. Then we extract the Locally Adaptive Regression Kernels (LARK) feature of each candidate sample and its neighbors respectively. At last, we determine whether a candidate should be rejected via calculating the matrix cosine similarity measure. A number of experiments show that combining with sparse and LARK representation can obtain good performs for rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, D., Song, F., Xu, Y., Liang, Z.: Advanced Pattern Recognition Technologies with Applications to Biometrics. Medical Information Science Reference (2009)

    Google Scholar 

  2. Xu, Y., Zhong, A., Yang, J., Zhang, D.: LPP Solution Schemes for Use with Face Recognition. Pattern Recognition 43, 4165–4176 (2010)

    Article  MATH  Google Scholar 

  3. Xu, Y., Zhang, D., Yang, J.Y.: A Feature Extraction Method for Use with Bimodal Biometrics. Pattern Recognition 43, 1106–1115 (2010)

    Article  MATH  Google Scholar 

  4. Wang, J., You, J., Li, Q., Xu, Y.: Orthogonal Discriminant Vector for Face Recognition Across Pose. Pattern Recognition 45, 4069–4079 (2012)

    Article  MATH  Google Scholar 

  5. Xu, Y., Zhu, X., Li, Z., Liu, G., Lu, Y., Liu, H.: Using the Original and ’Symmetrical Face’ Training Samples to Perform Representation Based Two-step Face Recognition. Pattern Recognition 46, 1151–1158 (2013)

    Article  Google Scholar 

  6. Landgrebe, T.C.W., Tax, D.M.J., PaclÅ‚k, P., et al.: The Interaction Between Classification and Reject Performance for Distance-based Reject-option Classifiers. Pattern Recognition Letters 27, 908–917 (2006)

    Article  Google Scholar 

  7. Eickeler, S., Jabs, M., Rigoll, G.: Comparison of Confidence Measures for Face Recognition. In: 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 257–262. IEEE (2000)

    Google Scholar 

  8. Suutala, J., Roning, J.: Methods for Person Identification on a Pressure-sensitive Floor: Experiments with Multiple Cclassifiers and Rreject Option. Information Fusion 9, 21–40 (2008)

    Article  Google Scholar 

  9. Kim, C., Choi, C.H.: Image Covariance-based Subspace Method for Face Recognition. Pattern Recognition 40, 1592–1604 (2007)

    Article  MATH  Google Scholar 

  10. Chen, J.C., Shi, S.Y., Lien, J.J.: Face Recognition and Unseen Subject Rejection in Margin-enhanced Space. In: International Conference on System Science and Engineering (ICSSE), pp. 631–636. IEEE (2010)

    Google Scholar 

  11. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)

    Article  Google Scholar 

  12. Karimi, M.M., Soltanian-Zadeh, H.: Face Recognition: A Sparse Representation-based Classification using Independent Component Analysis. In: 6th International Symposium on Telecommunications (IST), pp. 1170–1174. IEEE (2012)

    Google Scholar 

  13. Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: A Two-phase Test Sample Sparse Representation Method for Uuse with Face Rrecognition. IEEE Transactions on Circuits and Systems for Video Technology 21, 1255–1262 (2011)

    Article  Google Scholar 

  14. Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 372–386 (2012)

    Article  Google Scholar 

  15. Donoho, D.L.: For Most Large Underdetermined Systems of Linear Equations the Minimal l1-norm Ssolution is Also the Sparsest Solution. Communications on Pure and Applied Mathematics 59, 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Seo, H.J., Milanfar, P.: Face Verification Using the Lark Representation. IEEE Transactions on Information Forensics and Security 6, 1275–1286 (2011)

    Article  Google Scholar 

  17. Information on, http://www.cl.cam.ac.uk/research/dtg/attrachive/facedatabase.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, M., Wang, Y., Cui, J., Liu, S., Tian, Y. (2014). Face Recognition Based on Representation with Reject Option. In: Pan, JS., Krömer, P., Snášel, V. (eds) Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-319-01796-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01796-9_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01795-2

  • Online ISBN: 978-3-319-01796-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics