Skip to main content

Local Iterative DLT for Interval-Valued Stereo Calibration and Triangulation Uncertainty Bounding in 3D Biological Form Reconstruction

  • Conference paper
International Joint Conference SOCO’13-CISIS’13-ICEUTE’13

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 239))

  • 1986 Accesses

Abstract

The use of stereo vision for 3D biological data gathering in the field is affected by constrains in the position of the cameras, the quality of the optical elements and the numerical algorithms for calibration and matching. A procedure for bounding the 3D errors within an uncertainty volume is also lacking.

In this work, this is solved by implementing the whole set of computations, including calibration and triangulation, with interval data. This is in contrast with previous works that rely on Direct Linear Transform (DLT) as a camera model. To keep better with real lens aberrations, a local iterative modification is proposed that provides an on-demand set of calibration parameters for each 3D point, comprising the nearest ones in 3D space. In this way, the estimated camera parameters are closely related with camera aberrations at the lens area through which that 3D point is imaged.

We use real data from previous works in related research areas to judge whether our approach improves the accuracy of other crisp and interval-valued estimations without degrading the precision, and conclude that the new technique is able to improve the uncertainty volumes in a wide range of practical cases.

This work was supported by the Spanish Ministerio de Economía y Competitividad under Project TIN2011-24302, including funding from the European Regional Development Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zelditch, M.L., Swiderski, D.L., Sheets, H.D.: Geometric morphometrics for biologists: a primer (2012)

    Google Scholar 

  2. Claude, J., Paradis, E., Tong, H., Auffray, J.C.: A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biological Journal of the Linnean Society (79), 485–501 (2003)

    Google Scholar 

  3. Chiari, Y., Wang, B., Rushmeier, H.: Using digital images to reconstruct threedimensional biological forms: a new tool for morphological studies. Biological Journal of the Linnean Society (95), 425–436 (2008)

    Google Scholar 

  4. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson-Engineering (2007)

    Google Scholar 

  5. Hanning, T.: High Precision Camera Calibration (2010)

    Google Scholar 

  6. Cyganek, B.: An Introduction to 3D Computer Vision Techniques and Algorithms. John Wiley & Sons (2007)

    Google Scholar 

  7. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 221–244 (1992)

    Google Scholar 

  8. Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell., 1330–1334 (November 2000)

    Google Scholar 

  9. Aziz, A.Y.I., Karara, H.M.: Direct linear transformation into object space coordinates in close-range photogrammetry. In: Proc. of the Symposium on Close-Range Photogrammetry, Urbana, Illinois, pp. 1–18 (1971)

    Google Scholar 

  10. Abrahama, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification. ISPRS Journal of Photogrammetry and Remote Sensing 59(5), 278–288 (2005)

    Article  Google Scholar 

  11. Gennery, D.B.: Generalized Camera Calibration Including Fish-Eye Lenses. Int. J. Comput. Vision 68(3), 239–266 (2006)

    Article  Google Scholar 

  12. Schwalbe, E.: Geometric modelling and calibration of fisheye lens camera systems. In: Proceedings 2nd Panoramic Photogrammetry Workshop, Int. Archives of Photogrammetry and Remote Sensing, pp. 5–8 (2005)

    Google Scholar 

  13. Dunne, A.K., Mallon, J., Whelan, P.F.: Efficient generic calibration method for general cameras with single centre of projection. Computer Vision and Image Understanding 114(2), 220–233 (2010); Special issue on Omnidirectional Vision, Camera Networks and Non-conventional Cameras

    Google Scholar 

  14. Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8), 1335–1340 (2006)

    Article  Google Scholar 

  15. Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge (2001)

    Google Scholar 

  16. Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Int. J. Comput. Vision 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  17. Fusiello, A., Farenzena, M., Busti, A., Benedetti, A.: Computing rigorous bounds to the accuracy of calibrated stereo reconstruction (computer vision applications). In: Image and Signal Processing, IEE Proceedings Vision, vol. 152(6), pp. 695–701 (December 2005)

    Google Scholar 

  18. Ramalingam, S., Sturm, P.: Minimal Solutions for Generic Imaging Models. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, Anchorage, Alaska, Etats-Unis. IEEE (June 2008)

    Google Scholar 

  19. Blostein, S.D., Huang, T.S.: Error Analysis in Stereo Determination of 3-D Point Positions. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9(6), 752–765 (1987)

    Article  Google Scholar 

  20. Rodriguez, J.J., Aggarwal, J.K.: Stochastic analysis of stereo quantization error. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 467–470 (1990)

    Article  Google Scholar 

  21. Kim, D.H., Park, R.H.: Analysis of quantization error in line-based stereo matching. Pattern Recognition 27(7), 913–924 (1994)

    Article  Google Scholar 

  22. Balasubramanian, R., Das, S., Udayabaskaran, S., Swaminathan, K.: Quantization Error in Stereo Imaging systems. Int. J. Comput. Math. 79(6), 67–691 (2002)

    Article  MathSciNet  Google Scholar 

  23. Otero, J., Sánchez, L., Alcalá-Fdez, J.: Fuzzy-genetic optimization of the parameters of a low cost system for the optical measurement of several dimensions of vehicles. Soft Comput. 12(8), 751–764 (2008)

    Article  Google Scholar 

  24. Kamberova, G., Bajcsy, R.: Sensor Errors and the Uncertainties in Stereo Reconstruction. In: Empirical Evaluation Techniques in Computer Vision, pp. 96–116. IEEE Computer Society Press (1998)

    Google Scholar 

  25. Ji, H., Fermüller, C.: Noise causes slant underestimation in stereo and motion. Vision Research 46, 3105–3120 (2006)

    Article  Google Scholar 

  26. Mandelbaum, R., Kamberova, G., Mintz, M.: Stereo depth estimation: a confidence interval approach. In: Sixth International Conference on Computer Vision, 1998, pp. 503–509 (January 1998)

    Google Scholar 

  27. Egnal, G.: A stereo confidence metric using single view imagery with comparison to five alternative approaches. Image and Vision Computing 22(12), 943–957 (2004)

    Article  Google Scholar 

  28. Shary, S.P.: Algebraic Approach in the “Outer Problem” for Interval Linear Equations. Reliable Computing 3(2), 103–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Otero, J., Sánchez, L. (2014). Local Iterative DLT for Interval-Valued Stereo Calibration and Triangulation Uncertainty Bounding in 3D Biological Form Reconstruction. In: Herrero, Á., et al. International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-01854-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01854-6_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01853-9

  • Online ISBN: 978-3-319-01854-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics