Abstract
The estimation of the optimum number of loops to operate an integrated solar combined cycle gas turbine (ISCC) represents a complex problem and a very time demanding operation, which must be calculated in near-real time and as a result, it is hardly possible to be solved with regular ISCC production models. This problem is addressed evaluating different soft computing techniques, concluding that the BAG-REPT metamodel fits best generating MAE test of 4.19% and RMSE test of 8.75%. This model presents much lower time than regular ISCC production models and might be used as a decision tool for feasibility assessments and also in pre-design stages of new ISCC projects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baghernejad, A., Yaghoubi, M.: Exergy analysis of an integrated solar combined cycle system. Renewable Energy 35, 2157–2164 (2010)
Antonanzas-Torres, F., Sodupe-Ortega, E., Sanz-Garcia, A., Fernandez-Martinez, R., Martinez-de-Pison-Ascacibar, F.J.: Technical feasibility assessment of integrated solar combined cycle power plants in Ciudad Real (Spain) and Las Vegas (USA). In: Proc. 16th International Congress on Project Engineering, Valencia, Spain (2012)
NREL, National Renewable Energy Laboratory (2013), http://www.nrel.gov/csp/solarpaces/
Sanz-Garcia, A., Antonanzas-Torres, F., Fernandez-Ceniceros, J., Martinez-de-Pison, F.J.: Overall models based on ensemble methods for predicting continuous annealing furnace temperature settings. Ironmaking and Steelmaking (2013), doi:10.1179/1743281213Y.0000000104
de Oliveira Penna Tavares, G., Pacheco, M.A.C.: A Genetic algorithm applied to a main sequence stellar model. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS (LNAI), vol. 6678, pp. 32–42. Springer, Heidelberg (2011)
Pop, P.C., Matei, O., Sitar, C.P., Chira, C.: A genetic algorithm for solving the generalized vehicle routing problem. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010, Part II. LNCS (LNAI), vol. 6077, pp. 119–126. Springer, Heidelberg (2010)
Martinez-de-Pison, F.J., Pernia, A.V., Blanco, J., Gonzalez, A., Lostado, R.: Control model for an elastomer extrusion process obtained via a comparative analysis of data mining and artificial intelligence techniques. Polymer-Plastics Technology and Engineering 49, 779–790 (2010)
Martinez-de-Pison, F.J., Pernia, A.V., Gonzalez, A., Lopez-Ochoa, L.M., Ordieres, J.B.: Optimum model for predicting temperature settings on hot dip galvanising line. Ironmaking and Steelmaking 37(3), 187–194 (2010)
Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 16, 716–723 (1974)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)
Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: Proc. 9th European Conference on Machine Learning, Prague, Czech Republic, pp. 128–137 (April 1997)
Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
Stochastic gradient boosting. Stanford University, Standford (1999)
Mckay, M., Beckman, R., Conover, W.: A comparison of three method for selecting values of input variables in the analysis of output from a computer code. Tecnometrics 21, 239–245 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Antoñanzas-Torres, J., Antoñanzas-Torres, F., Sodupe-Ortega, E., Martínez-de-Pisón, F.J. (2014). Optimization of Solar Integration in Combined Cycle Gas Turbines (ISCC). In: Herrero, Á., et al. International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-01854-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-01854-6_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01853-9
Online ISBN: 978-3-319-01854-6
eBook Packages: EngineeringEngineering (R0)