Abstract
Schema matching plays a central role in identifying the semantic correspondences across shared-data applications, such as data integration. Due to the increasing size and the widespread use of XML schemas and different kinds of ontologies, it becomes toughly challenging to cope with large-scale schema matching. Clustering-based matching is a great step towards more significant reduction of the search space and thus improved efficiency. However, methods used to identify similar clusters depend on literally matching terms. To improve this situation, in this paper, a new approach is proposed which uses Latent Semantic Indexing that allows retrieving the conceptual meaning between clusters. The experimental evaluations show encourage results towards building efficient large-scale matching approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011)
Algergawy, A., Schallehn, E., Saake, G.: Improving XML schema matching using prufer sequences. DKE 68(8), 728–747 (2009)
Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Review 41(2), 335–362 (1999)
Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping verification: the spicy way. In: EDBT 2008, France,, pp. 85–96 (2008)
Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by latent semantic analysis. Journal of American Society for Information Science 41, 391–407
Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information Systems 32(6), 857–885 (2007)
Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based partitioning of large-scale ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 251–269. Springer, Heidelberg (2010)
Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. DKE 67, 140–160 (2008)
Landauer, T.: Handbook of Latent Semantic Analysis (2007)
Peukert, E., Massmann, S., Konig, K.: Comparing similarity combination methods for schema matching. In: GI-Workshop, pp. 692–701 (2010)
Rahm, E.: Towards large-scale schema and ontology matching. In: Data-Centric Systems and Applications, vol. 5258, pp. 3–27. Springer (2011)
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)
Seddiquia, M.H., Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Web Semantics 7(4), 344–356 (2009)
Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
Wang, Z., Wang, Y., Zhang, S.-S., Shen, G., Du, T.: Matching large scale ontology effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 99–105. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Moawed, S., Algergawy, A., Sarhan, A., Eldosouky, A., Saake, G. (2014). A Latent Semantic Indexing-Based Approach to Determine Similar Clusters in Large-scale Schema Matching. In: Catania, B., et al. New Trends in Databases and Information Systems. Advances in Intelligent Systems and Computing, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-01863-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-01863-8_29
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01862-1
Online ISBN: 978-3-319-01863-8
eBook Packages: EngineeringEngineering (R0)