Skip to main content

A CDSS Supporting Clinical Guidelines Integrated and Interoperable Within the Clinical Information System

  • Chapter
  • First Online:
Innovations in Intelligent Machines-4

Part of the book series: Studies in Computational Intelligence ((SCI,volume 514))

Abstract

A CDSS (Clinical Decision Support System) aiming to support the exploitation of CG (Clinical Guidelines) by HCP (Health Care Practitioners) has been designed, able to consider the available knowledge about the patient’s health stored within the CIS (Clinical Information System), using the CIS native, well-trained functions and ergonomics. Amongst the main methods used, figure rule based decision trees to represent the CG knowledge, concept dictionary bonded to international standard terminological systems for semantic indexing, usage of CIS components as part of the CDSS to ensure the respect of the clinical workflow. The results obtained are threefold: 1) a CG model structure adapted for such CDSS; 2) a semantic interoperability platform populated with SNOMED 3.5 international terminology system between CDSS and Electronic Healthcare Records; 3) a workflow of clinical information systems elements coupled by a rule engine solution allowing authoring CG as decision trees. The semantic interoperability platform is up and running in more than sixty large French healthcare organizations, the CDSS is available for first exploitation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.i2b2.org/about/index.html

  2. 2.

    http://wiki.hl7.org/index.php?title=Templates

  3. 3.

    www.medasys.com

  4. 4.

    International Organization for Standardization ISO 12967-1 Health informatics—Service architecture, http://www.iso.org, part 1—2009.

  5. 5.

    The GIP-DMP has been replaced by the ASIP-Santé agency in 2009.

  6. 6.

    AFFSAPS (2008): Recommandations de bonne pratique—Diagnostic et antibiothérapie des infections urinaires bactériennes communautaires chez l’adulte, Juin 2008. AFFSAPS has been replaced by the National Agency for the Safety of Medicines and Health Products (MSNA) in 2012.

  7. 7.

    ISO 13606 (2010) Health Informatics—Electronic health record communication (part 1 to 5), International Organisation for Standardization, www/iso/org, 2010.

  8. 8.

    International A. ASTM Standard E2210 (2012)—12 Standard Specification for Guideline Elements Model version 3 (GEM III)-Document Model for Clinical Practice Guidelines. West Conshohocken, PA; 2012.

References

  1. Abidi, S.R., Abidi, S.S., Hussain, S., Shepherd, M.: Ontology-based modeling of clinical practice guidelines: A clinical decision support system for breast cancer follow-up interventions at primary care settings. Stud. Health Technol. Inform. 129, 845–849 (2007)

    Google Scholar 

  2. Åhlfeldt, H., Karlsson, D., Petersson, H., Chen, R., Nyström, M., Sundvall, E.: Advancement in the standardisation of the EHR 5th Scandinavian Conference on Health Informatics 2007

    Google Scholar 

  3. Beale, T.: Archetypes and the EHR. Stud. Health Technol. Inform. 96, 238–244 (2003)

    Google Scholar 

  4. Damiani, G., Pinnarelli, L., Colosimo, S.C., Almiento, R., Sicuro, L., Galasso, R., Lorenzo Sommella, L., Ricciardi, W.: The effectiveness of computerized clinical guidelines in the process of care: A systematic review. BMC Health Serv. Res. 2010(10), 2 (2010)

    Article  Google Scholar 

  5. Degoulet, P., Marin, L., Lavril, M., Le Bozec, C., Delbecke, E., Meaux, J.J., Rose, L.: The HEGP component-based clinical information system. Int. J. Med. Inf. 69(2–3), 115–126 (2003)

    Article  Google Scholar 

  6. Deleger, L., Grouin, C., Zweigenbaum, P.: Extracting medical information from narrative patient records: the case of medication-related information. J. Am. Med. Inform. Assoc. 2010(17), 555–558 (2010)

    Article  Google Scholar 

  7. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med. Inform. 77(12), 787–808 (2008)

    Google Scholar 

  8. Kirkpatrick, D., Burkman, R.T.: Does standardization of care through clinical guidelines improve outcomes and reduce medical liability? Obstet. Gynecol. 116(5), 1022–1026 (2010)

    Google Scholar 

  9. Kulkarni, R.P., Ituarte, P.H., Gunderson, D., Yeh, M.W.: Clinical pathways improve hospital resource use in endocrine surgery. J Am Coll Surg. 212(1), 35–41 (2011). Epub 2010 Nov 30

    Google Scholar 

  10. Latoszek-Berendsen, A., Tange, H., van den Herik, H.J., Hasman, A.: From clinical practice guidelines to computer-interpretable guidelines. A litterature overview. Methods Inf Med. 49(6), 550–70 (2010)

    Google Scholar 

  11. Locatelli, F., Andrulli, S., Del Vecchio, L.: Difficulties of implementing clinical guidelines in medical practice. European Renal Association-European Dialysis and Transplant Association Editorial Comments. Nephrol. Dial. Transplant. 2000(15), 1284–1287 (2000)

    Article  Google Scholar 

  12. Lovis, C., Douglas, T., Pasche, E., Ruch, P., Colaert, D., Stroetmann, K.: DebugIT: Building a European distributed clinical data mining network to foster the fight against microbial diseases. Stud. Health Technol. Inform. 2009(148), 50–59 (2009)

    Google Scholar 

  13. Papageorgiou, E., Stylios, C., Groumpos, P.: Novel architecture for supporting medical decision making of different data types based on fuzzy cognitive map framework. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 1192–1195 (2007)

    Google Scholar 

  14. Peleg, M., Keren, S., Denekamp, Y.: Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). J. Biomed. Inform. 41, 180–201 (2008)

    Article  Google Scholar 

  15. Prior, M., Guerin, M., Grimmer-Somers, K.: The effectiveness of clinical guideline implementation strategies–a synthesis of systematic review findings. J Eval Clin Pract. 14(5), 888–97 (2008)

    Google Scholar 

  16. Rector, A.: Clinical terminology: Why is it so hard? Methods Inf. Med. 38(4–5), 239–252 (1999). doi:10.1267/METH99040239. PMID 10805008

  17. Rector, A.L., Qamar, R., Marley, T.: Binding ontologies and coding systems to electronic health records and messages. Appl. Ontol. (online) 4(1), 51–69 (2009). Available at http://www.cs.manchester.ac.uk/~rector/papers/krmed2006-rector-binding-ontologies-to-ehrs.pdf

  18. Schriger, D.L., Baraff, L.J., Buller, K., Shendrikar, M.A., Nagda, S., Lin, E.J., Mikulich, V.J., Cretin, S.: Implementation of clinical guidelines via a computer charting system: effect on the care of febrile children less than three years of age. J. Am. Med. Inform. Assoc. 7(2), 186–95 (2000)

    Google Scholar 

  19. Sonnenberg, F.A., Hagerty, C.G.: Computer interpretable clinical practice guidelines—Where we are and where we are going? AMIA Yearbook 2006(11), 45–158 (2006)

    Google Scholar 

  20. Stroetman,V., Kalra, D., Lewalle, P., Rector, A., Rodrigues, J., Stroetman, K., Surjan, G., Ustun, B., Virtanen, M., Zanstra, P.: Semantic interoperability for better health and safer healthcare. The European Commission. (2009). ISBN-13: 978-92-79-11139-6. DOI: 10.2759/38514. Available from: http://ec.europa.eu/information_society/activities/health/docs/publications/2009/2009semantic-health-report.pdf

  21. Thiessard, F., Mougin, F., Diallo, G., Jouhet, V., Cossin, S., Garcelon, N., Campillo, B., Jouini, W., Grosjean, J., Massari, P., Griffon, N., Dupuch, M., Tayalati, F., Dugas, E., Balvet, A., Grabar, N., Pereira, S., Frandji, B., Darmoni, S., Cuggia, M.: RAVEL: Retrieval and visualization in electronic health records. Stud. Health Technol. Inform. 2012(180), 194–198 (2012)

    Google Scholar 

  22. Wagholikar, K.B., MacLaughlin, K.L., Henry, M.R., Greenes, R.A., Hankey, R.A., Liu, H., Chaudhry, R.: Clinical decision support with automated text processing for cervical cancer screening. J. Am. Med. Inform. Assoc. 2012(19), 833–839 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Frandji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frandji, B., Kalra, D., Jaulent, MC. (2014). A CDSS Supporting Clinical Guidelines Integrated and Interoperable Within the Clinical Information System. In: Faucher, C., Jain, L. (eds) Innovations in Intelligent Machines-4. Studies in Computational Intelligence, vol 514. Springer, Cham. https://doi.org/10.1007/978-3-319-01866-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01866-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01865-2

  • Online ISBN: 978-3-319-01866-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics