Abstract
We study the computational complexity of the recently proposed nubots model of molecular-scale self-assembly. The model generalizes asynchronous cellular automaton to have non-local movement where large assemblies of molecules can be moved around, analogous to millions of molecular motors in animal muscle effecting the rapid movement of large arms and legs. We show that nubots is capable of simulating Boolean circuits of polylogarithmic depth and polynomial size, in only polylogarithmic expected time. In computational complexity terms, any problem from the complexity class NC is solved in polylogarithmic expected time on nubots that use a polynomial amount of workspace. Along the way, we give fast parallel algorithms for a number of problems including line growth, sorting, Boolean matrix multiplication and space-bounded Turing machine simulation, all using a constant number of nubot states (monomer types). Circuit depth is a well-studied notion of parallel time, and our result implies that nubots is a highly parallel model of computation in a formal sense. Thus, adding a movement primitive to an asynchronous non-deterministic cellular automation, as in nubots, drastically increases its parallel processing abilities.
Supported by National Science Foundation grants CCF-1219274, 0832824 (The Molecular Programming Project), and CCF-1162589. mpchen@caltech.edu, doris.s.xin@gmail.com, woods@caltech.edu. A full version of this paper will appear on the arXiv.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2005)
Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. Journal of the ACM 57, 14:1–14:36 (2010)
Aloupis, G., Collette, S., Damian, M., Demaine, E., Flatland, R., Langerman, S., O’rourke, J., Pinciu, V., Ramaswami, S., Sacristán, V., Wuhrer, S.: Efficient constant-velocity reconfiguration of crystalline robots. Robotica 29(1), 59–71 (2011)
Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacristán, V., Wuhrer, S.: Reconfiguration of cube-style modular robots using O(logn) parallel moves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 342–353. Springer, Heidelberg (2008)
Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006)
Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)
Butler, Z., Fitch, R., Rus, D.: Distributed control for unit-compressible robots: goal-recognition, locomotion, and splitting. IEEE/ASME Transactions on Mechatronics 7, 418–430 (2002)
Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R.T., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors): Self-assembly In the 2HAM vs. aTAM. In: STACS: 30th International Symposium on Theoretical Aspects of Computer Science, pp. 172–184 (2013)
Chandran, H., Gopalkrishnan, N., Reif, J.: Tile complexity of approximate squares. Algorithmica, 1–17 (2012)
Condon, A.: A theory of strict P-completeness. Computational Complexity 4(3), 220–241 (1994)
Dabby, N., Chen, H.-L.: Active self-assembly of simple units using an insertion primitive. In: SODA: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1526–1536 (January 2012)
Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R., Souvaine, D.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)
Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T., Winslow, A., Woods, D.: One tile to rule them all: Simulating any Turing machine, tile assembly system, or tiling system with a single puzzle piece (December 2012), Arxiv preprint arXiv:1212.4756 [cs.DS]
Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 100–114. Springer, Heidelberg (2011)
Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Woods, D.: The two-handed tile assembly model is not intrinsically universal. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 400–412. Springer, Heidelberg (2013)
Doty, D.: Randomized self-assembly for exact shapes. SICOMP 39, 3521 (2010)
Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pp. 439–446 (October 2012)
Fu, B., Patitz, M.J., Schweller, R.T., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 714–725. Springer, Heidelberg (2012)
Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-completeness theory. Oxford University Press, USA (1995)
Jonoska, N., Karpenko, D.: Active tile self-assembly, self-similar structures and recursion (2012), Arxiv preprint arXiv:1211.3085 [cs.ET]
Jonoska, N., McColm, G.L.: Complexity classes for self-assembling flexible tiles. Theoretical Computer Science 410(4), 332–346 (2009)
Kao, M., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 571–580. ACM (2006)
Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)
Klavins, E.: Directed self-assembly using graph grammars. In: Foundations of Nanoscience: Self Assembled Architectures and Devices, Snowbird, UT (2004)
Martin, A.C., Kaschube, M., Wieschaus, E.F.: Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457(7228), 495–499 (2008)
Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robotics & Automation Magazine 14(1), 71–78 (2007)
Murphy, N., Naughton, T.J., Woods, D., Henley, B., McDermott, K., Duffy, E., van der Burgt, P.J., Woods, N.: Implementations of a model of physical sorting. International Journal of Unconventional Computing 4(1), 3–12 (2008)
Murphy, N., Woods, D.: AND and/or OR: Uniform polynomial-size circuits. In: MCU: Machines, Computations and Universality (accepted, 2013)
Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)
Padilla, J., Liu, W., Seeman, N.: Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced tile assembly model. Natural Computing, 1–16 (2011)
Padilla, J., Patitz, M., Pena, R., Schweller, R., Seeman, N., Sheline, R., Summers, S., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 174–185. Springer, Heidelberg (2013)
Papadimitriou, C.M.: Computational complexity, 1st edn. Addison-Wesley Publishing Company, Inc. (1994)
Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 34–62. Springer, Heidelberg (2012)
Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer (1990)
Reif, J., Slee, S.: Optimal kinodynamic motion planning for 2D reconfiguration of self-reconfigurable robots. Robot. Sci. Syst. (2007)
Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 459–468. ACM Press (2000)
Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots 10(1), 107–124 (2001)
Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)
Summers, S.: Reducing tile complexity for the self-assembly of scaled shapes through temperature programming. Algorithmica, 1–20 (2012)
Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York, Inc. (1999)
Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology (June 1998)
Woods, D.: Upper bounds on the computational power of an optical model of computation. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 777–788. Springer, Heidelberg (2005)
Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: ITCS 2013: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, pp. 353–354. ACM (2013), Full version: arXiv:1301.2626 [cs.DS]
Woods, D., Naughton, T.J.: Parallel and sequential optical computing. In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 70–86. Springer, Heidelberg (2008)
Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Nuemann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)
Lvarez, C., Jenner, B.: A very hard log-space counting class. Theoretical Computer Science 107(1), 3–30 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, M., Xin, D., Woods, D. (2013). Parallel Computation Using Active Self-assembly. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-01928-4_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01927-7
Online ISBN: 978-3-319-01928-4
eBook Packages: Computer ScienceComputer Science (R0)