Skip to main content

Parallel Computation Using Active Self-assembly

  • Conference paper
DNA Computing and Molecular Programming (DNA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Included in the following conference series:

  • 1507 Accesses

Abstract

We study the computational complexity of the recently proposed nubots model of molecular-scale self-assembly. The model generalizes asynchronous cellular automaton to have non-local movement where large assemblies of molecules can be moved around, analogous to millions of molecular motors in animal muscle effecting the rapid movement of large arms and legs. We show that nubots is capable of simulating Boolean circuits of polylogarithmic depth and polynomial size, in only polylogarithmic expected time. In computational complexity terms, any problem from the complexity class NC is solved in polylogarithmic expected time on nubots that use a polynomial amount of workspace. Along the way, we give fast parallel algorithms for a number of problems including line growth, sorting, Boolean matrix multiplication and space-bounded Turing machine simulation, all using a constant number of nubot states (monomer types). Circuit depth is a well-studied notion of parallel time, and our result implies that nubots is a highly parallel model of computation in a formal sense. Thus, adding a movement primitive to an asynchronous non-deterministic cellular automation, as in nubots, drastically increases its parallel processing abilities.

Supported by National Science Foundation grants CCF-1219274, 0832824 (The Molecular Programming Project), and CCF-1162589. mpchen@caltech.edu, doris.s.xin@gmail.com, woods@caltech.edu. A full version of this paper will appear on the arXiv.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. Journal of the ACM 57, 14:1–14:36 (2010)

    Google Scholar 

  3. Aloupis, G., Collette, S., Damian, M., Demaine, E., Flatland, R., Langerman, S., O’rourke, J., Pinciu, V., Ramaswami, S., Sacristán, V., Wuhrer, S.: Efficient constant-velocity reconfiguration of crystalline robots. Robotica 29(1), 59–71 (2011)

    Article  MATH  Google Scholar 

  4. Aloupis, G., Collette, S., Demaine, E.D., Langerman, S., Sacristán, V., Wuhrer, S.: Reconfiguration of cube-style modular robots using O(logn) parallel moves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 342–353. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Butler, Z., Fitch, R., Rus, D.: Distributed control for unit-compressible robots: goal-recognition, locomotion, and splitting. IEEE/ASME Transactions on Mechatronics 7, 418–430 (2002)

    Article  Google Scholar 

  8. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R.T., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors): Self-assembly In the 2HAM vs. aTAM. In: STACS: 30th International Symposium on Theoretical Aspects of Computer Science, pp. 172–184 (2013)

    Google Scholar 

  9. Chandran, H., Gopalkrishnan, N., Reif, J.: Tile complexity of approximate squares. Algorithmica, 1–17 (2012)

    Google Scholar 

  10. Condon, A.: A theory of strict P-completeness. Computational Complexity 4(3), 220–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dabby, N., Chen, H.-L.: Active self-assembly of simple units using an insertion primitive. In: SODA: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1526–1536 (January 2012)

    Google Scholar 

  12. Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R., Souvaine, D.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T., Winslow, A., Woods, D.: One tile to rule them all: Simulating any Turing machine, tile assembly system, or tiling system with a single puzzle piece (December 2012), Arxiv preprint arXiv:1212.4756 [cs.DS]

    Google Scholar 

  14. Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 100–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Woods, D.: The two-handed tile assembly model is not intrinsically universal. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 400–412. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Doty, D.: Randomized self-assembly for exact shapes. SICOMP 39, 3521 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pp. 439–446 (October 2012)

    Google Scholar 

  18. Fu, B., Patitz, M.J., Schweller, R.T., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 714–725. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-completeness theory. Oxford University Press, USA (1995)

    MATH  Google Scholar 

  20. Jonoska, N., Karpenko, D.: Active tile self-assembly, self-similar structures and recursion (2012), Arxiv preprint arXiv:1211.3085 [cs.ET]

    Google Scholar 

  21. Jonoska, N., McColm, G.L.: Complexity classes for self-assembling flexible tiles. Theoretical Computer Science 410(4), 332–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kao, M., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 571–580. ACM (2006)

    Google Scholar 

  23. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., DamgÃ¥rd, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Klavins, E.: Directed self-assembly using graph grammars. In: Foundations of Nanoscience: Self Assembled Architectures and Devices, Snowbird, UT (2004)

    Google Scholar 

  25. Martin, A.C., Kaschube, M., Wieschaus, E.F.: Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457(7228), 495–499 (2008)

    Article  Google Scholar 

  26. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robotics & Automation Magazine 14(1), 71–78 (2007)

    Article  Google Scholar 

  27. Murphy, N., Naughton, T.J., Woods, D., Henley, B., McDermott, K., Duffy, E., van der Burgt, P.J., Woods, N.: Implementations of a model of physical sorting. International Journal of Unconventional Computing 4(1), 3–12 (2008)

    Google Scholar 

  28. Murphy, N., Woods, D.: AND and/or OR: Uniform polynomial-size circuits. In: MCU: Machines, Computations and Universality (accepted, 2013)

    Google Scholar 

  29. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Padilla, J., Liu, W., Seeman, N.: Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced tile assembly model. Natural Computing, 1–16 (2011)

    Google Scholar 

  31. Padilla, J., Patitz, M., Pena, R., Schweller, R., Seeman, N., Sheline, R., Summers, S., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 174–185. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Papadimitriou, C.M.: Computational complexity, 1st edn. Addison-Wesley Publishing Company, Inc. (1994)

    Google Scholar 

  33. Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 34–62. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  34. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer (1990)

    Google Scholar 

  35. Reif, J., Slee, S.: Optimal kinodynamic motion planning for 2D reconfiguration of self-reconfigurable robots. Robot. Sci. Syst. (2007)

    Google Scholar 

  36. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 459–468. ACM Press (2000)

    Google Scholar 

  37. Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots 10(1), 107–124 (2001)

    Article  MATH  Google Scholar 

  38. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Summers, S.: Reducing tile complexity for the self-assembly of scaled shapes through temperature programming. Algorithmica, 1–20 (2012)

    Google Scholar 

  40. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York, Inc. (1999)

    Google Scholar 

  41. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology (June 1998)

    Google Scholar 

  42. Woods, D.: Upper bounds on the computational power of an optical model of computation. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 777–788. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  43. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: ITCS 2013: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, pp. 353–354. ACM (2013), Full version: arXiv:1301.2626 [cs.DS]

    Google Scholar 

  44. Woods, D., Naughton, T.J.: Parallel and sequential optical computing. In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 70–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  45. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Nuemann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  46. Lvarez, C., Jenner, B.: A very hard log-space counting class. Theoretical Computer Science 107(1), 3–30 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, M., Xin, D., Woods, D. (2013). Parallel Computation Using Active Self-assembly. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics