Skip to main content

A Heat Kernel Based Cortical Thickness Estimation Algorithm

  • Conference paper
Book cover Multimodal Brain Image Analysis (MBIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8159))

Included in the following conference series:

Abstract

Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the grey matter geometry information in the in vivo brain MR images. First, we use the harmonic energy function to establish the tetrahedral mesh matching with the MR images and generate the Laplace-Beltrami operator matrix which includes the inherent geometric characteristics of the tetrahedral mesh. Second, the isothermal surfaces are computed by the finite element method with the volumetric Laplace-Beltrami operator and the direction of the steamline is obtained by tracing the maximum heat transfer probability based on the heat kernel diffusion. Thereby we can calculate the cerebral cortex thickness information between the point on the outer surface and the corresponding point on the inner surface. The method relies on intrinsic brain geometry structure and the computation is robust and accurate. To validate our algorithm, we apply it to study the thickness differences associated with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our preliminary experimental results in 151 subjects (51 AD, 45 MCI, 55 controls) show that the new algorithm successfully detects statistically significant difference among patients of AD, MCI and healthy control subjects. The results also indicate that the new method may have better performance than the Freesurfer software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarkson, M.J., Cardoso, M.J., Ridgway, G.R., Modat, M., Leung, K.K., Rohrer, J.D., Fox, N.C., Ourselin, S.: A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage 57(3), 856–865 (2011)

    Article  Google Scholar 

  2. Mak-Fan, K.M., Taylor, M.J., Roberts, W., Lerch, J.P.: Measures of cortical grey matter structure and development in children with autism spectrum disorder. J. Autism Dev. Disord. 42(3), 419–427 (2012)

    Article  Google Scholar 

  3. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97(20), 11050–11055 (2000)

    Article  Google Scholar 

  4. Dahnke, R., Yotter, R.A., Gaser, C.: Cortical thickness and central surface estimation. Neuroimage 65, 336–348 (2013)

    Article  Google Scholar 

  5. Cardoso, M.J., Clarkson, M.J., Ridgway, G.R., Modat, M., Fox, N.C., Ourselin, S.: LoAd: a locally adaptive cortical segmentation algorithm. Neuroimage 56(3), 1386–1397 (2011)

    Article  Google Scholar 

  6. Scott, M.L., Bromiley, P.A., Thacker, N.A., Hutchinson, C.E., Jackson, A.: A fast, model-independent method for cerebral cortical thickness estimation using MRI. Med. Image Anal. 13(2), 269–285 (2009)

    Article  Google Scholar 

  7. Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical thickness measurement. Neuroimage 45(3), 867–879 (2009)

    Article  Google Scholar 

  8. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum. Brain Mapp. 11(1), 12–32 (2000)

    Article  Google Scholar 

  9. Hyde, D.E., Duffy, F.H., Warfield, S.K.: Anisotropic partial volume CSF modeling for EEG source localization. Neuroimage 62(3), 2161–2170 (2012)

    Article  Google Scholar 

  10. Jones, G., Chapman, S.: Modeling growth in biological materials. SIAM Review 54(1), 52–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cassidy, J., Lilge, L., Betz, V.: Fullmonte: a framework for high-performance monte carlo simulation of light through turbid media with complex geometry, pp. 85920H-1–85920H-14 (2013)

    Google Scholar 

  12. Liu, Y., Xing, H.: A boundary focused quadrilateral mesh generation algorithm for multi-material structures. Journal of Computational Physics 232(1), 516–528 (2013)

    Article  Google Scholar 

  13. Lederman, C., Joshi, A., Dinov, I.: Tetrahedral mesh generation for medical images with multiple regions using active surfaces. In: Proc. IEEE Int. Symp. Biomed. Imaging, pp. 436–439 (2010)

    Google Scholar 

  14. Liu, Y., Foteinos, P.A., Chernikov, A.N., Chrisochoides, N.: Mesh deformation-based multi-tissue mesh generation for brain images. Eng. Comput. 28(4), 305–318 (2012)

    Article  MATH  Google Scholar 

  15. Zeng, W., Guo, R., Luo, F., Gu, X.: Discrete heat kernel determines discrete riemannian metric. Graph. Models 74(4), 121–129 (2012)

    Article  Google Scholar 

  16. Chung, M.K., Robbins, S.M., Dalton, K.M., Davidson, R.J., Alexander, A.L., Evans, A.C.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 25(4), 1256–1265 (2005)

    Article  Google Scholar 

  17. Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1065–1071 (2011)

    Article  Google Scholar 

  18. Sharma, A., Horaud, R.P., Mateus, D.: 3D shape registration using spectral graph embedding and probabilistic matching. Image Processing and Analysing With Graphs: Theory and Practice, 441–474 (2012)

    Google Scholar 

  19. Lederman, C., Joshi, A., Dinov, I., Vese, L., Toga, A., Van Horn, J.D.: The generation of tetrahedral mesh models for neuroanatomical MRI. Neuroimage 55(1), 153–164 (2011)

    Article  Google Scholar 

  20. Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.T.: Volumetric harmonic brain mapping. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2004, pp. 1275–1278 (2004)

    Google Scholar 

  21. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15(4), 869–877 (2005)

    Article  Google Scholar 

  22. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999)

    Article  Google Scholar 

  23. Nichols, T., Hayasaka, S.: Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12(5), 419–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Y., Shi, J., Yin, X., Gu, X., Chan, T.F., Yau, S.T., Toga, A.W., Thompson, P.M.: Brain surface conformal parameterization with the Ricci flow. IEEE Trans. Med. Imaging 31(2), 251–264 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, G. et al. (2013). A Heat Kernel Based Cortical Thickness Estimation Algorithm. In: Shen, L., Liu, T., Yap, PT., Huang, H., Shen, D., Westin, CF. (eds) Multimodal Brain Image Analysis. MBIA 2013. Lecture Notes in Computer Science, vol 8159. Springer, Cham. https://doi.org/10.1007/978-3-319-02126-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02126-3_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02125-6

  • Online ISBN: 978-3-319-02126-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics