Skip to main content

Numerical Studies of the Tunneling Splitting of Malonaldehyde and the Eigenstates of Hydrated Hydroxide Anion Using MCTDH

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

A detailed and accurate description of vibrations of molecules and chemical reactions in the field of physical chemistry often requires a full quantum mechanical treatment of the system of interest. This usually implies that the time-dependent or the time-independent Schrödinger equation of the nuclear degrees of freedom (DOF) has to be solved explicitly. For small systems (up to six internal DOF) this can be done with standard methods, i.e., by directly sampling the quantum mechanical wavefunction on a (product-) grid and solving the Schrödinger equation on these grid points. Numerically, within the standard method the multi-dimensional quantum mechanical wavefunction is stored as an f-way tensor, where f is the number of DOF. Due to the linearity of the Schrödinger equation the resulting numerical tasks then usually reduce to standard problems such as the calculation of eigenvalues or solving first order differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Brill, O. Vendrell, F. Gatti, H.-D. Meyer, in High Performance Computing in Science and Engineering 07, ed. by W.E. Nagel, D.B. Kröner, M. Resch (Springer, Heidelberg, 2008), pp. 141–156

    Google Scholar 

  2. M. Brill, O. Vendrell, H.-D. Meyer, in High Performance Computing in Science and Engineering 09, ed. by W.E. Nagel, D.B. Kröner, M. Resch (Springer, Heidelberg, 2010), pp. 147–163

    Google Scholar 

  3. O. Vendrell, F. Gatti, D. Lauvergnat, H.-D. Meyer, J. Chem. Phys. 127, 184302 (2007)

    Article  Google Scholar 

  4. O. Vendrell, F. Gatti, H.-D. Meyer, J. Chem. Phys. 127, 184303 (2007)

    Article  Google Scholar 

  5. O. Vendrell et al., J. Chem. Phys. 130, 234305 (2009), see supplementary material, EPAPS document E-JCPSA6-130-023924, which can be downloaded from: ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-130-023924/

  6. O. Vendrell, F. Gatti, H.-D. Meyer, Angew. Chem. Int. Ed. 48, 352 (2009)

    Article  Google Scholar 

  7. O. Vendrell, F. Gatti, H.-D. Meyer, J. Chem. Phys. 131, 034308 (2009)

    Article  Google Scholar 

  8. M. Schröder, F. Gatti, H.-D. Meyer, J. Chem. Phys. 134, 234307 (2011)

    Article  Google Scholar 

  9. P.A.M. Dirac, Proc. Camb. Philos. Soc. 26, 376 (1930)

    Article  MATH  Google Scholar 

  10. J. Frenkel, Wave Mechanics (Clarendon Press, Oxford, 1934)

    Google Scholar 

  11. U. Manthe, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992)

    Article  Google Scholar 

  12. M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  Google Scholar 

  13. L.J. Doriol, F. Gatti, C. Iung, H.-D. Meyer, J. Chem. Phys. 129, 224109 (2008)

    Article  Google Scholar 

  14. H.-D. Meyer, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 351 (2012)

    Article  Google Scholar 

  15. T. Carrington Jr., W.H. Miller, J. Chem. Phys. 84, 4364 (1986)

    Article  Google Scholar 

  16. N. Shida, P.F. Barbara, J.E. Almöf, J. Chem. Phys. 91, 4061 (1989)

    Article  Google Scholar 

  17. D. Tew, N. Handy, S. Carter, J. Chem. Phys. 125, 084313 (2003)

    Article  Google Scholar 

  18. M.D. Coutinho-Neto, A. Viel, U. Manthe, J. Chem. Phys. 121, 9207 (2004)

    Article  Google Scholar 

  19. A. Viel, M.D. Coutinho-Neto, U. Manthe, J. Chem. Phys. 126, 024308 (2007)

    Article  Google Scholar 

  20. A. Hazra, J.H. Skone, S. Hammes-Schiffer, J. Chem. Phys. 130, 054108 (2009)

    Article  Google Scholar 

  21. Y. Wang, J.M. Bowman, J. Chem. Phys. 129, 121103 (2008)

    Article  Google Scholar 

  22. Y. Wang et al., J. Chem. Phys. 128, 224314 (2008)

    Article  Google Scholar 

  23. T. Hammer, M.D. Coutinho-Neto, A. Viel, U. Manthe, J. Chem. Phys. 131, 224109 (2009)

    Article  Google Scholar 

  24. A. Jäckle, H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996)

    Article  Google Scholar 

  25. A. Jäckle, H.-D. Meyer, J. Chem. Phys. 109, 3772 (1998)

    Article  Google Scholar 

  26. H.-D. Meyer, F. Gatti, G.A. Worth (eds.), Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  27. F. Gatti, H.-D. Meyer, Chem. Phys. 304, 3 (2004)

    Article  Google Scholar 

  28. S. Carter, S.J. Culik, J.M. Bowman, J. Chem. Phys. 107, 10458 (1997)

    Article  Google Scholar 

  29. H. Rabitz, O.F. Alis, J. Math. Chem. 25, 197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. J.M. Bowman, S. Carter, X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003)

    Article  Google Scholar 

  31. O.F. Alis, H. Rabitz, J. Math. Chem. 29, 127 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. G.Y. Li et al., J. Phys. Chem. A 110, 2474 (2006)

    Article  Google Scholar 

  33. S. Manzhos, T. Carrington, J. Chem. Phys. 125, 084109 (2006)

    Article  Google Scholar 

  34. E.A. Price et al., Chem. Phys. Lett. 366, 412 (2002)

    Article  Google Scholar 

  35. E.G. Diken et al., J. Phys. Chem. A 109, 1487 (2005)

    Article  Google Scholar 

  36. S.T. Roberts et al., Proc. Natl. Acad. Sci. 106, 15154 (2009)

    Article  Google Scholar 

  37. M.E. Tuckerman, D. Marx, M. Parrinello, Nature 417, 925 (2002)

    Article  Google Scholar 

  38. A.B. McCoy et al., J. Chem. Phys. 122, 061101 (2005)

    Article  Google Scholar 

  39. A.B. McCoy, X. Huang, S. Carter, J.M. Bowman, J. Chem. Phys. 123, 064317 (2005)

    Article  Google Scholar 

  40. H.-G. Yu, J. Chem. Phys. 125, 204306 (2006)

    Article  Google Scholar 

  41. A.B. McCoy, E.G. Diken, M.A. Johnson, J. Chem. Phys. 113, 7346 (2009)

    Article  Google Scholar 

  42. D. Peláez, H.-D. Meyer, J. Chem. Phys. 138, 014108 (2013)

    Article  Google Scholar 

  43. H.-D. Meyer, F. Le Quéré, C. Léonard, F. Gatti, Chem. Phys. 329, 179 (2006)

    Article  Google Scholar 

  44. T. Hammer, U. Manthe, J. Chem. Phys. 134, 224305 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dieter Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Schröder, M., Peláez, D., Meyer, HD. (2013). Numerical Studies of the Tunneling Splitting of Malonaldehyde and the Eigenstates of Hydrated Hydroxide Anion Using MCTDH. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_15

Download citation

Publish with us

Policies and ethics