Skip to main content

DNS of Lean Premixed Flames

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

The paper presents results from the Direct Numerical Simulation of lean premixed hydrogen and methane flames. A new turbulence-generating technique, based on step-wise body forcing in physical space is introduced. It is stable, easy to implement and straight forward to use in the case of parallelization strategy based on domain decomposition.

Flame-vortex interactions are also studied, both in two and three dimensions. A non-stationary method for straining the flame front, based on artificially generated Couette-like flow fields, is applied. It results pure strain without curvature. For the cases studied, much larger strain rate is achieved than that for the extinction limit in the case of twin opposed stationary flames. Despite the quite high strain rates achieved, no local extinction of the flame front has been achieved for the present simulations.

All computations are carried out on the new CRAY-XE6 supercomputer at the High Performance Computing Center Stuttgart (HLRS). Numerical issues and results from a three-dimensional scaling test are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of c2 hydrocarbons. Combust. Flame 121, 122–136 (2000)

    Article  Google Scholar 

  2. K.T. Aung, M.I. Hassan, G.M. Faeth, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combust. Flame 109, 1–24 (1997)

    Article  Google Scholar 

  3. M. Baum, T. Poinsot, D. Thevenin, Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys 116, 247–261 (1994)

    Article  Google Scholar 

  4. R. Bilger, M. Esler, S. Starner, On reduced mechanisms for methane-air combustion, in Lecture Notes in Physics, vol. 384 (Springer, Berlin, 1991), pp. 86–110

    Google Scholar 

  5. H. Bockhorn, N. Zarzalis, M. Lecanu, DFG Collaborative Research Centre 606, Non-stationary Combustion: Transport Phenomena, Chemical Reactions, Technical Systems. DFG Funding Proposal 1.1.2009–31.12.2012, Subproject B8, 2008

    Google Scholar 

  6. J.H. Chen, H.G. Im, Correlations of flame speed with stretch in turbulent premixed methane/air flames, in Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, 1998, pp. 819–826

    Google Scholar 

  7. J.H. Chen, H.G. Im, Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28, 211–218 (2000)

    Article  Google Scholar 

  8. J.A. Denev, J. Fröhlich, H. Bockhorn, Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys. Fluids 21, 015101 (2009)

    Article  Google Scholar 

  9. E. Hassel, N. Kornev, V. Zhdanov, A. Chorny, M. Walter, Analysis of mixing processes in jet mixers using les under consideration of heat transfer and chemical reaction, in Springer Series on Heat and Mass Transfer (Volume Title: Micro and Macro Mixing), ed. by H. Bockhorn et al. (Springer, Berlin, 2010), pp. 165–184

    Google Scholar 

  10. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developping direct numerical of large eddy simulation. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  11. N. Kornev, E Hassel, Synthesis of homogeneous anisotropic divergence-free turbulent fields with prescribed second-order statistics by vortex dipoles. Phys. Fluids 19(6), 068101 (1)–068101(4) (2007)

    Google Scholar 

  12. C.K. Law, C.J. Sung, G. Yu, R.L. Axelbaum, On the structural sensitivity of purely strained planar premixed flames to strain rate variations. Combust. Flame 98, 139–154 (1994)

    Article  Google Scholar 

  13. R. Lepper, Analyse der interaktion von turbulenzwirbeln und vorgemischten flammenfronten mittels direkter numerischer simulationen. Diplomarbeit KIT, Engler-Bunte-Institut Bereich Verbrennungstechnik, Prof. Dr.-Ing. H. Bockhorn, Ord. und Institut fr Thermische Strmungsmaschinen Prof. Dr.-Ing. H.-J. Bauer, Ord., p. 120, 2012

    Google Scholar 

  14. J.A. Miller, R.E. Mitchell, M.D. Smooke, R.J. Kee, Toward a comprehensive chemical kinetic for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. Proc. Combust. Inst. 19, 181–196 (1982)

    Google Scholar 

  15. T. Poinsot, S. Lele, Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys 101, 104–129 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards, Philadelphia, 2005)

    Google Scholar 

  17. B. Rogg, Response and flamelet structure of stretched premixed methane-air flames. Combust. Flame 73, 45–65 (1988)

    Article  Google Scholar 

  18. J. Savre, H. Carlsson, X.S. Bai, Tubulent methane/air premixed flame structure at high karlovitz numbers. Flow Turbul. Combust. 90, 325–341 (2013)

    Article  Google Scholar 

  19. M.D. Smooke, V. Giovangigli. Premixed and nonpremixed test problem results, in Lecture Notes in Physics, vol. 384 (Springer, Berlin, 1991), pp. 29–47

    Google Scholar 

  20. C.J. Sung, J.B. Lliu, C.K. Law, On the scalar structure of nonequidiffusive premixed flames in counterflow. Combust. Flame 106, 168–183 (1996)

    Article  Google Scholar 

  21. D. Thévenin, F. Behrendt, U. Maas, B. Przywara, J. Warnatz, Development of a parallel direct simulation code to investigate reactive flows. Comput. Fluids 25, 485–496 (1996)

    Article  MATH  Google Scholar 

  22. UCSD Chemical-Kinetic Mechanisms for Combustion Applications, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html. Mechanical and Aerospace Engineering (Combustion Research), 2012

  23. M. Weiss, N. Zarzalis, R. Suntz, Experimental study of markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combust. Flame 154, 671–691 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was enabled through the funding of the DFG collaborative research center SFB606 “Non-stationary combustion: transport phenomena, chemical reactions and technical systems”, subproject B8. The simulations were performed on the national super computer CRAY-XE6 at the High Performance Computing Center Stuttgart (HLRS) under the grant with acronym “DNSPREM” which is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan A. Denev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Denev, J.A., Bockhorn, H. (2013). DNS of Lean Premixed Flames. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_18

Download citation

Publish with us

Policies and ethics