Skip to main content

Magma Ocean Cumulate Overturn and Its Implications for the Thermo-chemical Evolution of Mars

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

Early in the history of terrestrial planets, the fractional crystallization of primordial magma oceans may have led to the formation of large scale chemical heterogeneities. These may have been preserved over the entire planetary evolution as suggested for Mars by the isotopic analysis of the so-called SNC meteorites. The fractional crystallization of a magma ocean leads to a chemical stratification characterized by a progressive enrichment in heavy elements from the core-mantle boundary to the surface. This results in an unstable configuration that causes the overturn of the mantle and the subsequent formation of a stable chemical layering. Assuming scaling parameters appropriate for Mars, we first performed simulations of 2D thermo-chemical convection in Cartesian geometry with the numerical code YACC. We ran a large set of simulations spanning a wide parameter space, by varying systematically the buoyancy ratio B, which measures the relative importance of chemical to thermal buoyancy, in order to understand the basic physics governing the magma ocean cumulate overturn and its consequence on mantle dynamics. Moreover, we derived scaling laws that relate the time over which chemical heterogeneities can be preserved (mixing time) and the critical yield stress (maximal yield stress that allows the lithosphere to undergo brittle failure) to the buoyancy ratio. We have found that the mixing time increases exponentially with B, while the critical yield stress shows a linear dependence. We investigated then Mars early thermo-chemical evolution using the code GAIA in a 2D cylindrical geometry and assuming a detailed magma ocean crystallization sequence as obtained from geochemical modeling. A stagnant lid forms rapidly because of the strong temperature dependence of the viscosity. This immobile layer at the top of the mantle prevents the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. The convection pattern below this dense stagnant lid is dominated by small-scale structures caused by perturbations in the chemical component. Therefore, large-scale volcanic features observed over Mars surface cannot be reproduced. Assuming that the stagnant lid will break, the inefficient heat transport due to the stable density gradient and the entire amount of heat sources above the core-mantle-boundary (CMB) lead to a strong increase of the temperature to values that exceed the liquidus. We conclude that a fractionated global and deep magma ocean is difficult to reconcile with observations. Other scenarios like shallow or hemispherical magma ocean or even another freezing mechanism, which would reduce the strength of chemical gradient need to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Christensen, Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. Roy. Astron. Soc. 77, 343–384 (1984)

    Article  Google Scholar 

  2. V. Debaille, A. Brandon, Q. Yin, B. Jacobsen, Coupled142Nd—143Nd evidence for a protracted magma ocean in Mars. Nature 450(7169), 525–528 (2007)

    Article  Google Scholar 

  3. V. Debaille, Q.-Z. Yin, A.D. Brandon, B. Jacobsen, Martian mantle mineralogy investigated by the176Lu—176Hf and147Sm—143Nd systematics of shergottites. Earth Planet. Sci. Lett. 269, 186–199 (2008)

    Article  Google Scholar 

  4. V. Debaille, A. Brandon, C. ONeill, Q. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nature Geosci. 2(8), 548–552 (2009)

    Article  Google Scholar 

  5. O. Grasset, E.M. Parmentier, Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. J. Geophys. Res. 103, 18,171–18,181 (1998)

    Google Scholar 

  6. L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteoritics Planet. Sci. 38, 12, 1753–1771, (2003).

    Article  Google Scholar 

  7. L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Early magnetic field and magmatic activity on Mars form magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005)

    Article  Google Scholar 

  8. U. Hansen, D. Yuen, Extended-boussinesq thermalchemical convection with moving heat sources and variable viscosity. Earth Planet. Sci. Lett., 176(3), 401–411 (2000)

    Article  Google Scholar 

  9. C. Hüttig, K. Stemmer, Finite volume discretization for dynamic viscosities on Voronoi grids. Phys. Earth Planet. In. (2008). doi:10.1016/j.pepi.2008.07.007

    Google Scholar 

  10. C. Hüttig, K. Stemmer, The spiral grid: A new approach to discretize the sphere and its application to mantle convection. Geochem. Geophys. Geosyst. 9, Q02018 (2008). doi:10.1029/2007GC001581

    Google Scholar 

  11. S. Karato, M.S. Paterson, J.D. Fitz Gerald, Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 8151–8176, 91 (1986)

    Google Scholar 

  12. T. Keller, P.J. Tackley, Towards self-consistent modelling of the Martian dichotomy: The influence of low-degree convection on crustal thickness distribution. Icarus 202(2), 429–443 (2009)

    Article  Google Scholar 

  13. S.D. King, C. Lee, P. van Keken, W. Leng, S. Zhong, E. Tan, N. Tosi, M. Kameyama, A community benchmark for 2D Cartesian compressible convection in the Earths mantle. Geophys. J. Int. 180, 73–87 (2010). doi:10.1111/j.1365–246X.2009.04413.x

    Article  Google Scholar 

  14. D.L. Kohlstedt, B. Evans, S.J. Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res. 100, B9, 17,587–17,602 (1995)

    Google Scholar 

  15. T. Lebrun, H. Massol, E. Chassere, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. E Planet (accepted) doi: 10.1002/jgre.20068

    Google Scholar 

  16. G. Neukum, R. Jaumann, H. Hoffmann, E. Hauber, J.W. Head, A.T. Basilevsky, B.A. Ivanov, S.C. Werner, S. van Gasselt, J.B. Murray, T. McCord, The HRSC Co-I Team: Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432, 971–979 (2004)

    Article  Google Scholar 

  17. E. Ohtani, Y. Nagatab, A. Suzuki, T. Katoa, Melting relations of peridotite and the density crossover in planetary mantles. Chem. Geol. 120, 207–221 (1995)

    Article  Google Scholar 

  18. M. Pauer, D. Breuer, Constraints on the maximum crustal density from gravity-topography modeling: Applications to the southern highlands of Mars. Earth Planet. Sci. Lett. 276(3–4), 253–261 (2008). doi:10.1016/j.epsl.2008.09.014

    Article  Google Scholar 

  19. A.-C. Plesa, Mantle convection in a 2D spherical shell. Proceedings of the First International Conference on Advanced Communications and Computation ( INFOCOMP 2011), ed. by C.-P. Rckemann, W. Christmann, S. Saini, M. Pankowska, pp. 167–172, Barcelona, Spain, 23–29 October 2011, ISBN: 978-1-61208-161-8, http://www.thinkmind.org/download.php?articleid=infocomp_2011_2_10_10002. Accessed 3 November 2011

  20. A.-C.Plesa, N. Tosi, C. Hüttig, Thermo-chemical convection in planetary mantles: advection methods and magma ocean overturn simulations, in Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences, ed. by C.-P. Rueckemann (IGI Global, Hershey, PA, 2013)

    Google Scholar 

  21. A.-C. Plesa, N. Tosi, D. Breuer, Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?. Submitted to Earth and Planet. Sci. Lett.

    Google Scholar 

  22. J.H. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. E Planet. 111 (2006)

    Google Scholar 

  23. G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  24. F. Sohl, G. Schubert, T. Spohn, Geophysical constraints on the composition and structure of the Martian interior. J. Geophys. Res. 110, E12008 (2005). doi:10.1029/2005JE002520

    Article  Google Scholar 

  25. V. Solomatov, Fluid dynamics of a terrestrial magma ocean. In Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), p. 555

    Google Scholar 

  26. O. Šramek, S. Zhong, Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration. J. Geophys. Res. 117(E01005) (2012). doi:10.1029/2011JE003867

    Google Scholar 

  27. P.J. Tackley, S.D. King, Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4(4), 8302 (2003). doi:10.1029/2001GC000214

    Google Scholar 

  28. A. Ismail-Zadeh, P.J. Tackley, Computational Methods for Geodynamics (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  29. N. Tosi, D.A. Yuen, O. Čadek, Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth-dependent thermodynamic and transport properties. Earth Planet. Sci. Lett. 298, 229–243 (2010). doi:10.1016/j.epsl.2010.08.001

    Article  Google Scholar 

  30. N. Tosi, A.-C. Plesa, D. Breuer, Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J. Geophys. Res. Planet. 118, 1–17 (2013). doi:10.1002/jgre.20109

    Google Scholar 

  31. P.E. van Keken, S.D. King, H. Schmeling, U.R. Christensen, D. Neumeister, M.P. Doin, A comparison of methods for the modeling of thermochemical convection. J. Geophys. Res. 102, 22477–22495 (1997)

    Article  Google Scholar 

  32. S. Zaranek, E. Parmentier, Convective cooling of an initially stably stratied uid with temperature-dependent viscosity: Implications for the role of solid-state convection in planetary evolution. J. Geophys. Res. 109(B3), B03,409 (2004)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Helmholtz Association through the research alliance “Planetary Evolution and Life”, by the Deutsche Forschungs Gemeinschaft (grant number TO 704/1-1) and by the High Performance Computing Center Stuttgart (HLRS) through the project Mantle Thermal and Compositional Simulations (MATHECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Catalina Plesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Plesa, AC., Tosi, N., Breuer, D. (2013). Magma Ocean Cumulate Overturn and Its Implications for the Thermo-chemical Evolution of Mars. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_43

Download citation

Publish with us

Policies and ethics