Abstract
fMRI analysis has most often been approached with linear methods. However, this disregards information encoded in the relationships between voxels. We propose to exploit the inherent spatial structure of the brain to improve the prediction performance of fMRI analysis. We do so in an exploratory fashion by representing the fMRI data by graphs. We use the Weisfeiler-Lehman algorithm to efficiently compute subtree features of the graphs. These features encode non-linear interactions between voxels, which contain additional discriminative information that cannot be captured by a linear classifier. In order to make use of the efficiency of the Weisfeiler-Lehman algorithm, we introduce a novel pyramid quantization strategy to approximate continuously labeled graphs with a sequence of discretely labeled graphs. To control the capacity of the resulting prediction function, we utilize the elastic net sparsity regularizer. We validate our method on a cocaine addiction dataset showing a significant improvement over elastic net and kernel ridge regression baselines and a reduction in classification error of over 14%. Source code is also available at https://gitorious.org/wlpyramid .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Demirci, O., Clark, V., Calhoun, V.: A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia. Neuroimage 39 (2008)
Wang, X., Hutchinson, R., Mitchell, T.M.: Training fMRI classifiers to discriminate cognitive states across multiple subjects. In: NIPS (2003)
Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)
Tahmasebi, A.M., Artiges, E., Banaschewski, T., Barker, G.J., Bruehl, R., Bchel, C., Conrod, P.J., Flor, H., Garavan, H., Gallinat, J., Heinz, A., Ittermann, B., Loth, E., Mareckova, K., Martinot, J.L., Poline, J.B., Rietschel, M., Smolka, M.N., et al.: Creating probabilistic maps of the face network in the adolescent brain: A multicentre functional mri study. Human Brain Mapping 33, 938–957 (2012)
Honorio, J., Tomasi, D., Goldstein, R., Leung, H., Samaras, D.: Can a single brain region predict a disorder? IEEE Transactions on Medical Imaging (2012)
Carroll, M., Cecchi, G., Rish, I., Garg, R., Rao, A.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44, 112–122 (2009)
Gkirtzou, K., Honorio, J., Samaras, D., Goldstein, R., Blaschko, M.B.: fMRI analysis of cocaine addiction using k-support sparsity. In: ISBI (2013)
Venkataraman, A., Kubicki, M., Golland, P.: From brain connectivity models to identifying foci of a neurological disorder. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 715–722. Springer, Heidelberg (2012)
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted small-world networks in schizophrenia. Brain 131 (2008)
Mokhtari, F., Hossein-Zadeh, G.A.: Decoding brain states using backward edge elimination and graph kernels in fMRI connectivity networks. Journal of Neuroscience Methods 212, 259–268 (2013)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B 67, 301–320 (2005)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. JMLR 12, 2539–2561 (2011)
Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)
Goldstein, R., Alia-Klein, N., Tomasi, D., Carrillo, J., Maloney, T., Woicik, P., Wang, R., Telang, F., Volkow, N.: Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. PNAS 106, 9453 (2009)
Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph kernels. JMLR 11, 1201–1242 (2010)
Sporns, O.: Networks of the Brain. MIT Press (2010)
Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage 54, 1812–1822 (2011)
Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Tech. Informatsia, Ser. 2(9) (1968)
Goldstein, R.Z., Woicik, P.A., Maloney, T., Tomasi, D., Alia-Klein, N., Shan, J., Honorio, J., Samaras, D., Wang, R., Telang, F., Wang, G.J., Volkow, N.D.: Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. PNAS 107, 16667–16672 (2010)
Culbertson, C., Bramen, J., Cohen, M., London, E.D., Olmstead, R.E., Gan, J.J., Costello, M.R., Shulenberger, S., Mandelkern, M.A., Brody, A.L.: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Archives of General Psychiatry 68, 505–515 (2011)
Franklin, T.R., Wang, Z., Li, Y., Suh, J.J., Goldman, M., Lohoff, F.W., Cruz, J., Hazan, R., Jens, W., Detre, J.A., Berrettini, W., O’Brien, C.P., Childress, A.R.: Dopamine transporter genotype modulation of neural responses to smoking cues: confirmation in a new cohort. Addiction Biology 16, 308–322 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Gkirtzou, K., Honorio, J., Samaras, D., Goldstein, R., Blaschko, M.B. (2013). fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-02267-3_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02266-6
Online ISBN: 978-3-319-02267-3
eBook Packages: Computer ScienceComputer Science (R0)