Abstract
HEp-2 cell image classification is an important and relatively unexplored area of research. This paper presents an experimental analysis of five different categories of feature sets with four different classifiers to determine the best performing combination of features and classifiers. The analysis is performed on the ICIP 2013 Cell Image Classification Contest Training dataset comprising over 13,000 cell images pertaining to six cell classes. The results computed with 10 fold cross validation show that texture features perform the best among all the explored feature sets and the combination of Laws features with SVM yields the highest accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wiik, A.S., Høier-Madsen, M., Forslid, J., Charles, P., Meyrowitsch, J.: Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells. Journal of Autoimmunity 35(3), 276–290 (2010)
NCCLS: Center for disease control - quality assurance for the indirect immunofluorescence test for autoantibodies to nuclear antigen (IF-ANA): Approved guideline. LA2-A 16(11) (1996)
Wiliem, A., Wong, Y., Sanderson, C., Hobson, P., Chen, S., Lovell, B.: Classification of human epithelial type 2 cell indirect immunofluoresence images via codebook based descriptors. In: WACV, pp. 95–102 (2013)
Ersoy, I., Bunyak, F., Peng, J., Palaniappan, K.: HEp-2 cell classification in IIF images using shareboost. In: ICPR, pp. 3362–3365 (2012)
Ghosh, S., Chaudhary, V.: Feature analysis for automatic classification of HEp-2 florescence patterns: Computer-aided diagnosis of auto-immune diseases. In: ICPR, pp. 174–177 (2012)
Li, K., Yin, J., Lu, Z., Kong, X., Zhang, R., Liu, W.: Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification. In: ICPR, pp. 170–173 (2012)
Iannello, G., Onofri, L., Soda, P.: A bag of visual words approach for centromere and cytoplasmic staining pattern classification on HEp-2 images. In: CBMS, pp. 1–6 (2012)
Ali, W., Piro, P., Giampaglia, D., Pourcher, T., Barlaud, M.: Biological cells classification using bio-inspired descriptor in a boosting k-NN framework. In: CBMS, pp. 1–6 (2012)
Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S.: HEp-2 cells classification via fusion of morphological and textural features. In: BIBE, pp. 689–694 (2012)
Cordelli, E., Soda, P.: Color to grayscale staining pattern representation in IIF. In: CBMS, pp. 1–6 (2011)
Foggia, P., Percannella, G., Soda, P., Vento, M.: Early experiences in mitotic cells recognition on HEp-2 slides. In: CBMS, pp. 38–43 (2010)
Soda, P., Iannello, G.: Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE TITB 13(3), 322–329 (2009)
Hobson, P., Percannella, G., Vento, M., Wiliem, A.: Competition on cells classification by fluorescent image analysis. In: ICIP (2013), http://nerone.diiie.unisa.it/contest-icip-2013/index.shtml
Boucheron, L.E.: Object- and Spatial-Level Quantitative Analysis of Multispectral Histopathology Images for Detection and Characterization of Cancer. PhD thesis, UCSB (2008)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE T-SMC (6), 610–621 (1973)
Tang, X.: Texture information in run-length matrices. IEEE TIP 7(11), 1602–1609 (1998)
Laws, K.I.: Textured image segmentation. Technical report, USC (1980)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM T-IST 2(3), 1–27 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Agrawal, P., Vatsa, M., Singh, R. (2013). HEp-2 Cell Image Classification: A Comparative Analysis. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-02267-3_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02266-6
Online ISBN: 978-3-319-02267-3
eBook Packages: Computer ScienceComputer Science (R0)