Abstract
Recently, machine learning methods (e.g., support vector machine (SVM)) have received increasing attentions in neuroimaging-based Alzheimer’s disease (AD) classification studies. For classifying AD patients from normal controls (NC), standard SVM trains a classification model from only AD and NC subjects. However, in practice besides AD and NC subjects, there may also exist other subjects such as those with mild cognitive impairment (MCI). In this paper, we investigate the potential of using MCI subjects to aid the identification of AD from NC subjects. Specifically, we propose to use the universum support vector machine (U-SVM) learning by treating MCI subjects as the universum examples that do not belong to either of the classes (i.e., AD and NC) of interest. The idea of U-SVM learning is to separate AD from NC subjects through large margin hyperplane with the universum MCI subjects laying inside the margin borders, which is in accordance with our domain knowledge that MCI is a prodromal stage of AD with cognitive status between NC and AD. Furthermore, we propose ensemble universum SVM learning for multimodal classification by training an individual U-SVM classifier for each modality. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database demonstrate the efficacy of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867 (2011)
Davatzikos, C., Bhatt, P., Shaw, L., Batmanghelich, K., Trojanowski, J.: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging 32, e2322.e19–e2322.e27 (2011)
Cho, Y., Seong, J., Jeong, Y., Shin, S.: Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59, 2217–2230 (2012)
Zhang, D., Shen, D.: Semi-supervised multimodal classification of Alzheimer’s Disease. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1628–1631 (2011)
Cheng, B., Zhang, D., Shen, D.: Domain Transfer Learning for MCI Conversion Prediction. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 82–90. Springer, Heidelberg (2012)
Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference with the Universum. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1009–1016 (2006)
Cherkassky, V., Dhar, S., Dai, W.: Practical conditions for effectiveness of the Universum learning. IEEE Trans. Neural Networks 22, 1241–1255 (2011)
Westman, E., Muehlboeck, J., Simmons, A.: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 62, 229–238 (2012)
Walhovd, K., Fjell, A., Brewer, J., McEvoy, L., Fennema-Notestine, C., Hagler, D., Jennings, R., Karow, D., Dale, A.: Combining MR Imaging, Positron-Emission Tomography, and CSF Biomarkers in the Diagnosis and Prognosis of Alzheimer Disease. Am. J. Neuroradiol. 31, 347–354 (2010)
Vapnik, V.: Estimation of dependences based on empirical data. Springer, New York (2006)
Sinz, F., Chapelle, O., Agarwal, A., Scholkopf, B.: An Analysis of Inference with the Universum. In: Proceedings of the 21st Annual Conference on Neural Information Processing Systems (NIPS), pp. 1–8 (2008)
Tan, A., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Appl. Bioinformatics 2, S75–S83 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Hao, X., Zhang, D. (2013). Ensemble Universum SVM Learning for Multimodal Classification of Alzheimer’s Disease. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-02267-3_29
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02266-6
Online ISBN: 978-3-319-02267-3
eBook Packages: Computer ScienceComputer Science (R0)