Abstract
Neurosonography is the most widely used imaging technique for assessing neuro-development of the growing fetus in clinical practice. 3D neurosonography has an advantage of quick acquisition but is yet to demonstrate improvements in clinical workflow. In this paper we propose an automatic technique to segment four important fetal brain structures in 3D ultrasound. The technique is built within a Random Decision Forests framework. Our solution includes novel pre-processing and new features. The pre-processing step makes sure that all volumes are in the same coordinate. The new features constrain the appearance framework by adding a novel distance feature. Validation on 51 3D fetal neurosonography images shows that the proposed technique is capable of segmenting fetal brain structures and providing promising qualitative and quantitative results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cardoza, J.D., Goldstein, R.B., Filly, R.A.: Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169(3), 711–714 (1988)
Malinger, G., et al.: Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound in Obstetrics and Gynecology 29(1), 109–116 (2007)
Salomon, L.J., Bernard, J.P., Ville, Y.: Reference ranges for fetal ventricular width: a non-normal approach. Ultrasound in Obstetrics and Gynecology 30(1), 61–66 (2007)
Yaqub, M., et al.: Efficient Volumetric Segmentation using 3D Fast-Weighted Random Forests. In: MLMI 2011 (2011)
Yaqub, M., et al.: Weighted Voting in 3D Random Forest Segmentation. In: MIUA 2010 (2010)
Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel MR Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 111–118. Springer, Heidelberg (2010)
Yi, Z., Criminisi, A., Shotton, J., Blake, A.: Discriminative, semantic segmentation of brain tissue in MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 558–565. Springer, Heidelberg (2009)
Lempitsky, V., Verhoek, M., Noble, J.A., Blake, A.: Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447–456. Springer, Heidelberg (2009)
Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)
Margeta, J., Geremia, E., Criminisi, A., Ayache, N.: Layered Spatio-Temporal Forests for Left Ventricle Segmentation from 4D Cardiac MRI Data. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 109–119. Springer, Heidelberg (2012)
Becker, B.G., et al.: Automatic segmentation of the cerebellum of fetuses on 3D ultrasound images, using a 3D Point Distribution Model. In: EMBC 2010 (2010)
Zikic, D., et al.: Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)
Pauly, O., Ahmadi, S.-A., Plate, A., Boetzel, K., Navab, N.: Detection of Substantia Nigra Echogenicities in 3D Transcranial Ultrasound for Early Diagnosis of Parkinson Disease. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 443–450. Springer, Heidelberg (2012)
Yaqub, M., et al.: Automatic detection of local fetal brain structures in ultrasound images. In: ISBI 2012 (2012)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. Foundations and Trends® in Computer Graphics and Vision 7(2-3) (2012)
Cuingnet, R., et al.: Where is my Baby? A Fast Fetal Head Auto-Alignment in 3D-Ultrasound. In: ISBI 2013 (2013)
Konukoglu, E., Glocker, B., Zikic, D., Criminisi, A.: Neighbourhood Approximation Forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 75–82. Springer, Heidelberg (2012)
Criminisi, A., Shotton, J., Bucciarelli, S.: Decision Forests with Long-Range Spatial Context for Organ Localization in CT Volumes. In: MICCAI workshop on PMMIA 2009 (2009)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Yaqub, M. et al. (2013). Volumetric Segmentation of Key Fetal Brain Structures in 3D Ultrasound. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-02267-3_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02266-6
Online ISBN: 978-3-319-02267-3
eBook Packages: Computer ScienceComputer Science (R0)