Skip to main content

Neurobiological Models of the Central Complex and the Mushroom Bodies

  • Chapter
  • First Online:
Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 21))

Abstract

This study reviews the actual knowledge on functions of the central complex (CX) and the mushroom bodies (MBs) in a genetic model insect, the fly Drosophila melanogaster. Ongoing research of UNIMAINZ and respective data are included. Reference is made to other insects, where respective functions are not yet studied in Drosophila. Neuroanatomical information is reported with regard to the general flow of information in these central brain neuropils. Particular projection systems and circuits are taken into account where this can be linked to functions. Models are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Gerber, H. Tanimoto, M. Heisenberg, An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 14(6), 737–744 (2004)

    Article  Google Scholar 

  2. B. Gerber, H. Tanimoto, M. Heisenberg, Erratum. An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 15(4), 494–495 (2005)

    Article  Google Scholar 

  3. U. Hanesch, K.F. Fischbach, M. Heisenberg, Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257(2), 343–366 (1989)

    Google Scholar 

  4. X. Liu, R.L. Davis, Insect olfactory memory in time and space. Curr. Opin. Neurobiol. 16(6), 679–685 (2006)

    Article  Google Scholar 

  5. K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation memory in Drosophila. Nature 453(7199), 1244–1247 (2008)

    Google Scholar 

  6. T. Triphan, B. Poeck, K. Neuser, R. Strauss, Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20(7), 663–668 (2010)

    Google Scholar 

  7. S. Heinze, U. Homberg, Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315(5814), 995–997 (2007)

    Article  Google Scholar 

  8. U. Träger, U. Homberg, Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J. Neurosci. 31(6), 2238–2247 (2011)

    Article  Google Scholar 

  9. U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 680–687 (2011)

    Article  Google Scholar 

  10. U. Homberg, Structure and functions of the central complex in insects, in Arthropod Brain. Its Evolution, Development, Structure, and Functions (John Wiley & Sons, New York, 1987), pp. 347–367

    Google Scholar 

  11. U. Homberg, The central complex in the brain of the locust: anatomical and physiological characterisation, in Brain-Perception-Cognition (Thieme, Stuttgart, 1990), p. 318

    Google Scholar 

  12. R. Strauss, U. Hanesch, M. Kinkelin, R. Wolf, M. Heisenberg, No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. J. Neurogenet. 8(3), 125–155 (1992)

    Google Scholar 

  13. P. Callaerts, S. Leng, J. Clements, C. Benassayag, D. Cribbs, Y.Y. Kang, U. Walldorf, K.F. Fischbach, R. Strauss, Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J. Neurobiol. 46(2), 73–88 (2001)

    Google Scholar 

  14. B. Poeck, T. Triphan, K. Neuser, R. Strauss, Locomotor control by the central complex in Drosophila—an analysis of the tay bridge mutant. Dev. Neurobiol. 68(8), 1046–1058 (2008)

    Google Scholar 

  15. R. Strauss, The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12(6), 633–638 (2002)

    Article  Google Scholar 

  16. J. Pielage, G. Steffes, D.C. Lau, B.A. Parente, S.T. Crews, R. Strauss, C. Klämbt, Novel behavioral and developmental defects associated with Drosophila single-minded. Dev. Biol. 249(2), 283–299 (2002)

    Google Scholar 

  17. R. Ernst, M. Heisenberg, The memory template in Drosophila pattern vision at the flight simulator. Vision. Res. 39(23), 3920–3933 (1999)

    Google Scholar 

  18. Z. Wang, Y. Pan, W. Li, H. Jiang, L. Chatzimanolis, J. Chang, Z. Gong, L. Liu, Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15(3), 133–142 (2008)

    Google Scholar 

  19. R. Strauss, J. Pichler, Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol 182(4), 411–423 (1998)

    Google Scholar 

  20. M.V. Chafee, P.S. Goldman-Rakic, Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79(6), 2919–2940 (1998)

    Google Scholar 

  21. G. Putz, F. Bertolucci, T. Raabe, T. Zars, M. Heisenberg, The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci. 24(44), 9745–9751 (2004)

    Google Scholar 

  22. O. Sayeed, S. Benzer, Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Nat. Acad. Sci. 93(12), 6079–6084 (1996)

    Google Scholar 

  23. L. Liu, Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, M.J. Welsh, Drosophila hygrosensation requires the trp channels water witch and nanchung. Nature 450(7167), 294–298 (2007)

    Google Scholar 

  24. S. Pick, R. Strauss, Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15(16), 1473–1478 (2005)

    Google Scholar 

  25. B. Kienitz, R. Strauss, Need for speed: conditions for the formation of an implicit memory in Drosophila, in 32nd Goettingen Neurobiol Conference Neuroforum, vol. 15, pp. T25–8A (2009)

    Google Scholar 

  26. R. Strauss, M. Heisenberg, A higher control center of locomotor behavior in the Drosophila brain. J. Neurosci. 13(5), 1852–1861 (1993)

    Google Scholar 

  27. J.R. Martin, T. Raabe, M. Heisenberg, Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 185(3), 277–288 (1999)

    Google Scholar 

  28. J.R. Martin, R. Ernst, M. Heisenberg, Temporal pattern of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 184(1), 73–84 (1999)

    Google Scholar 

  29. J.R. Martin, P. Faure, R. Ernst, The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila. J. Neurogenet. 15(3–4), 205–219 (2001)

    Google Scholar 

  30. U. Hanesch, Der Zentralkomplex von Drosophila melanogaster. PhD thesis, Universität Würzburg, (1987)

    Google Scholar 

  31. M. Mronz, R. Strauss, Visual motion integration controls attractiveness of objects in walking flies and a mobile robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3559–3564 (2008)

    Google Scholar 

  32. G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076), 551–556 (2006)

    Google Scholar 

  33. G. Hartmann, R. Wehner, The ant’s path integration system: a neural architecture. Biol. Cybern. 73(6), 483–497 (1995)

    MATH  Google Scholar 

  34. M. Heisenberg, R. Wolf et al., Vision in Drosophila: Genetics of Microbehaviour (Springer, Berlin, 1984)

    Book  Google Scholar 

  35. M.F. Wernet, M.M. Velez, D.A. Clark, F. Baumann-Klausener, J.R. Brown, M. Klovstad, T. Labhart, T.R. Clandinin, Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22(1), 12–20 (2011)

    Google Scholar 

  36. W. Gronenberg, G.O. López-Riquelme, Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol. Hung. 55(1), 31–37 (2004)

    Article  Google Scholar 

  37. U. Schröter, R. Menzel, A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465(2), 168–178 (2003)

    Article  Google Scholar 

  38. S.M. Farris, G.E. Robinson, S.E. Fahrbach, Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21(16), 6395–6404 (2001)

    Google Scholar 

  39. J.S. de Belle, M. Heisenberg et al., Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263(5147), 692–694 (1994)

    Google Scholar 

  40. M. Giurfa, Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 193(8), 801–824 (2007)

    Article  Google Scholar 

  41. J. Perez-Orive, O. Mazor, G.C. Turner, S. Cassenaer, R.I. Wilson, G. Laurent, Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)

    Article  Google Scholar 

  42. C. Margulies, T. Tully, J. Dubnau, Deconstructing memory in Drosophila. Curr. Biol. 15(17), 700–713 (2005)

    Google Scholar 

  43. L. Liu, R. Wolf, R. Ernst, M. Heisenberg, Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753–756 (1999)

    Google Scholar 

  44. S. Tang, A. Guo, Choice behavior of Drosophila facing contradictory visual cues. Science 294(5546), 1543–1547 (2001)

    Google Scholar 

  45. K. Zhang, J.Z. Guo, Y. Peng, W. Xi, A. Guo, Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Sci. Signal. 316(5833), 1901 (2007)

    Google Scholar 

  46. L. Liu, O. Yermolaieva, W.A. Johnson, F.M. Abboud, M.J. Welsh, Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6(3), 267–273 (2003)

    Google Scholar 

  47. M. Rosenzweig, K.M. Brennan, T.D. Tayler, P.O. Phelps, A. Patapoutian, P.A. Garrity, The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19(4), 419–424 (2005)

    Google Scholar 

  48. S.T. Hong, S. Bang, S. Hyun, J. Kang, K. Jeong, D. Paik, J. Chung, J. Kim, cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454(7205), 771–775 (2008)

    Google Scholar 

  49. S.M.J. McBride, G. Giuliani, C. Choi, P. Krause, D. Correale, K. Watson, G. Baker, K.K. Siwicki, Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967–977 (1999)

    Google Scholar 

  50. R.W. Siegel, J.C. Hall, Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Nat. Acad. Sci. 76(7), 3430–3434 (1979)

    Google Scholar 

  51. A.J. Mei-ling, L.C. Griffith, Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn. Mem. 7(1), 32–42 (2000)

    Google Scholar 

  52. J.C. Hendricks, S.M. Finn, K.A. Panckeri, J. Chavkin, J.A. Williams, A. Sehgal, A.I. Pack, Rest in Drosophila is a sleep-like state. Neuron 25(1), 129–138 (2000)

    Google Scholar 

  53. P.J. Shaw, C. Cirelli, R.J. Greenspan, G. Tononi, Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459), 1834–1837 (2000)

    Google Scholar 

  54. D.A. Nitz, B. Van Swinderen, G. Tononi, R.J. Greenspan, Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12(22), 1934–1940 (2002)

    Google Scholar 

  55. B. van Swinderen, R.J. Greenspan, Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6(6), 579–586 (2003)

    Google Scholar 

  56. W.J. Joiner, A. Crocker, B.H. White, A. Sehgal, Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441(7094), 757–760 (2006)

    Google Scholar 

  57. J.L. Pitman, J.J. McGill, K.P. Keegan, R. Allada, A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441(7094), 753–756 (2006)

    Google Scholar 

  58. L. Seugnet, Y. Suzuki, L. Vine, L. Gottschalk, P.J. Shaw, D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18(15), 1110–1117 (2008)

    Google Scholar 

  59. Q. Liu, S. Liu, L. Kodama, M.R. Driscoll, M.N. Wu, Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114–2123 (2012)

    Google Scholar 

  60. M. Mizunami, J.M. Weibrecht, N.J. Strausfeld, Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402(4), 520–537 (1998)

    Article  Google Scholar 

  61. M. Mizunami, R. Okada, Y. Li, N.J. Strausfeld et al., Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J. Comp. Neurol. 402(4), 501–519 (1998)

    Article  Google Scholar 

  62. C.N. Serway, R.R. Kaufman, R. Strauss, J. Steven de Belle, Mushroom bodies enhance initial motor activity in Drosophila. J. Neurogenet. 23(1–2), 173–184 (2009)

    Google Scholar 

  63. J.R. Martin, R. Ernst, M. Heisenberg, Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5(1), 179–191 (1998)

    Google Scholar 

  64. A. Baier, B. Wittek, B. Brembs, Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205(9), 1233–1240 (2002)

    Google Scholar 

  65. M. Besson, J.R. Martin, Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J. Neurobiol. 62(3), 386–396 (2004)

    Google Scholar 

  66. J. Erber, T.H. Masuhr, R. Menzel, Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5(4), 343–358 (1980)

    Google Scholar 

  67. C. Schroll, T. Riemensperger, D. Bucher, J. Ehmer, T. Völler, K. Erbguth, B. Gerber, T. Hendel, G. Nagel, E. Buchner et al., Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16(17), 1741–1747 (2006)

    Google Scholar 

  68. C.J. Burke, W. Huetteroth, D. Owald, E. Perisse, M.J. Krashes, G. Das, D. Gohl, M. Silies, S. Certel, S. Waddell, Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492(7429):433–437 (2012)

    Google Scholar 

  69. M.J. Krashes, A.C. Keene, B. Leung, J.D. Armstrong, S. Waddell, Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53(1), 103–115 (2007)

    Google Scholar 

  70. W.B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20(1), 11–21 (1957)

    Article  Google Scholar 

  71. S. Corkin, What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3(2), 153–160 (2002)

    Article  Google Scholar 

  72. E.E. Smith, S.M. Kosslyn, Cognitive Psychology: Mind and Brain, 1st edn. (Pearson/Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  73. B. Kolb, I.Q. Whishaw, Fundamentals of Human Neuropsychology, 4th edn. (W.H. Freeman, New York, 1996)

    Google Scholar 

  74. E.I. Moser, E. Kropff, M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)

    Article  Google Scholar 

  75. C. Yellman, H. Tao, B. He, J. Hirsh, Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc. Nat. Acad. Sci. 94(8), 4131–4136 (1997)

    Google Scholar 

Download references

Acknowledgments

Work on the model was funded by the EU grant no. 216227, SPARK II, call identifier FP7-2007-ICT-1. I am indebted to Paolo Arena for perfectly coordinating this EU project SPARK II and to all the members of the consortium for many fruitful discussions during the meetings. Christian Berg prepared early versions of figures 7–10 and intensively discussed the global model with me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strauss, R. (2014). Neurobiological Models of the Central Complex and the Mushroom Bodies. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02362-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02361-8

  • Online ISBN: 978-3-319-02362-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics