Abstract
This study reviews the actual knowledge on functions of the central complex (CX) and the mushroom bodies (MBs) in a genetic model insect, the fly Drosophila melanogaster. Ongoing research of UNIMAINZ and respective data are included. Reference is made to other insects, where respective functions are not yet studied in Drosophila. Neuroanatomical information is reported with regard to the general flow of information in these central brain neuropils. Particular projection systems and circuits are taken into account where this can be linked to functions. Models are developed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
B. Gerber, H. Tanimoto, M. Heisenberg, An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 14(6), 737–744 (2004)
B. Gerber, H. Tanimoto, M. Heisenberg, Erratum. An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 15(4), 494–495 (2005)
U. Hanesch, K.F. Fischbach, M. Heisenberg, Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257(2), 343–366 (1989)
X. Liu, R.L. Davis, Insect olfactory memory in time and space. Curr. Opin. Neurobiol. 16(6), 679–685 (2006)
K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation memory in Drosophila. Nature 453(7199), 1244–1247 (2008)
T. Triphan, B. Poeck, K. Neuser, R. Strauss, Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20(7), 663–668 (2010)
S. Heinze, U. Homberg, Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315(5814), 995–997 (2007)
U. Träger, U. Homberg, Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J. Neurosci. 31(6), 2238–2247 (2011)
U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 680–687 (2011)
U. Homberg, Structure and functions of the central complex in insects, in Arthropod Brain. Its Evolution, Development, Structure, and Functions (John Wiley & Sons, New York, 1987), pp. 347–367
U. Homberg, The central complex in the brain of the locust: anatomical and physiological characterisation, in Brain-Perception-Cognition (Thieme, Stuttgart, 1990), p. 318
R. Strauss, U. Hanesch, M. Kinkelin, R. Wolf, M. Heisenberg, No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. J. Neurogenet. 8(3), 125–155 (1992)
P. Callaerts, S. Leng, J. Clements, C. Benassayag, D. Cribbs, Y.Y. Kang, U. Walldorf, K.F. Fischbach, R. Strauss, Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J. Neurobiol. 46(2), 73–88 (2001)
B. Poeck, T. Triphan, K. Neuser, R. Strauss, Locomotor control by the central complex in Drosophila—an analysis of the tay bridge mutant. Dev. Neurobiol. 68(8), 1046–1058 (2008)
R. Strauss, The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12(6), 633–638 (2002)
J. Pielage, G. Steffes, D.C. Lau, B.A. Parente, S.T. Crews, R. Strauss, C. Klämbt, Novel behavioral and developmental defects associated with Drosophila single-minded. Dev. Biol. 249(2), 283–299 (2002)
R. Ernst, M. Heisenberg, The memory template in Drosophila pattern vision at the flight simulator. Vision. Res. 39(23), 3920–3933 (1999)
Z. Wang, Y. Pan, W. Li, H. Jiang, L. Chatzimanolis, J. Chang, Z. Gong, L. Liu, Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15(3), 133–142 (2008)
R. Strauss, J. Pichler, Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol 182(4), 411–423 (1998)
M.V. Chafee, P.S. Goldman-Rakic, Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79(6), 2919–2940 (1998)
G. Putz, F. Bertolucci, T. Raabe, T. Zars, M. Heisenberg, The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci. 24(44), 9745–9751 (2004)
O. Sayeed, S. Benzer, Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Nat. Acad. Sci. 93(12), 6079–6084 (1996)
L. Liu, Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, M.J. Welsh, Drosophila hygrosensation requires the trp channels water witch and nanchung. Nature 450(7167), 294–298 (2007)
S. Pick, R. Strauss, Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15(16), 1473–1478 (2005)
B. Kienitz, R. Strauss, Need for speed: conditions for the formation of an implicit memory in Drosophila, in 32nd Goettingen Neurobiol Conference Neuroforum, vol. 15, pp. T25–8A (2009)
R. Strauss, M. Heisenberg, A higher control center of locomotor behavior in the Drosophila brain. J. Neurosci. 13(5), 1852–1861 (1993)
J.R. Martin, T. Raabe, M. Heisenberg, Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 185(3), 277–288 (1999)
J.R. Martin, R. Ernst, M. Heisenberg, Temporal pattern of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. A.: Neuroethol. Sens. Neural Behav. Physiol. 184(1), 73–84 (1999)
J.R. Martin, P. Faure, R. Ernst, The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila. J. Neurogenet. 15(3–4), 205–219 (2001)
U. Hanesch, Der Zentralkomplex von Drosophila melanogaster. PhD thesis, Universität Würzburg, (1987)
M. Mronz, R. Strauss, Visual motion integration controls attractiveness of objects in walking flies and a mobile robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3559–3564 (2008)
G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076), 551–556 (2006)
G. Hartmann, R. Wehner, The ant’s path integration system: a neural architecture. Biol. Cybern. 73(6), 483–497 (1995)
M. Heisenberg, R. Wolf et al., Vision in Drosophila: Genetics of Microbehaviour (Springer, Berlin, 1984)
M.F. Wernet, M.M. Velez, D.A. Clark, F. Baumann-Klausener, J.R. Brown, M. Klovstad, T. Labhart, T.R. Clandinin, Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22(1), 12–20 (2011)
W. Gronenberg, G.O. López-Riquelme, Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol. Hung. 55(1), 31–37 (2004)
U. Schröter, R. Menzel, A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465(2), 168–178 (2003)
S.M. Farris, G.E. Robinson, S.E. Fahrbach, Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21(16), 6395–6404 (2001)
J.S. de Belle, M. Heisenberg et al., Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263(5147), 692–694 (1994)
M. Giurfa, Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 193(8), 801–824 (2007)
J. Perez-Orive, O. Mazor, G.C. Turner, S. Cassenaer, R.I. Wilson, G. Laurent, Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)
C. Margulies, T. Tully, J. Dubnau, Deconstructing memory in Drosophila. Curr. Biol. 15(17), 700–713 (2005)
L. Liu, R. Wolf, R. Ernst, M. Heisenberg, Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753–756 (1999)
S. Tang, A. Guo, Choice behavior of Drosophila facing contradictory visual cues. Science 294(5546), 1543–1547 (2001)
K. Zhang, J.Z. Guo, Y. Peng, W. Xi, A. Guo, Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Sci. Signal. 316(5833), 1901 (2007)
L. Liu, O. Yermolaieva, W.A. Johnson, F.M. Abboud, M.J. Welsh, Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6(3), 267–273 (2003)
M. Rosenzweig, K.M. Brennan, T.D. Tayler, P.O. Phelps, A. Patapoutian, P.A. Garrity, The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19(4), 419–424 (2005)
S.T. Hong, S. Bang, S. Hyun, J. Kang, K. Jeong, D. Paik, J. Chung, J. Kim, cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454(7205), 771–775 (2008)
S.M.J. McBride, G. Giuliani, C. Choi, P. Krause, D. Correale, K. Watson, G. Baker, K.K. Siwicki, Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967–977 (1999)
R.W. Siegel, J.C. Hall, Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Nat. Acad. Sci. 76(7), 3430–3434 (1979)
A.J. Mei-ling, L.C. Griffith, Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn. Mem. 7(1), 32–42 (2000)
J.C. Hendricks, S.M. Finn, K.A. Panckeri, J. Chavkin, J.A. Williams, A. Sehgal, A.I. Pack, Rest in Drosophila is a sleep-like state. Neuron 25(1), 129–138 (2000)
P.J. Shaw, C. Cirelli, R.J. Greenspan, G. Tononi, Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459), 1834–1837 (2000)
D.A. Nitz, B. Van Swinderen, G. Tononi, R.J. Greenspan, Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12(22), 1934–1940 (2002)
B. van Swinderen, R.J. Greenspan, Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6(6), 579–586 (2003)
W.J. Joiner, A. Crocker, B.H. White, A. Sehgal, Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441(7094), 757–760 (2006)
J.L. Pitman, J.J. McGill, K.P. Keegan, R. Allada, A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441(7094), 753–756 (2006)
L. Seugnet, Y. Suzuki, L. Vine, L. Gottschalk, P.J. Shaw, D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18(15), 1110–1117 (2008)
Q. Liu, S. Liu, L. Kodama, M.R. Driscoll, M.N. Wu, Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114–2123 (2012)
M. Mizunami, J.M. Weibrecht, N.J. Strausfeld, Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402(4), 520–537 (1998)
M. Mizunami, R. Okada, Y. Li, N.J. Strausfeld et al., Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J. Comp. Neurol. 402(4), 501–519 (1998)
C.N. Serway, R.R. Kaufman, R. Strauss, J. Steven de Belle, Mushroom bodies enhance initial motor activity in Drosophila. J. Neurogenet. 23(1–2), 173–184 (2009)
J.R. Martin, R. Ernst, M. Heisenberg, Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5(1), 179–191 (1998)
A. Baier, B. Wittek, B. Brembs, Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205(9), 1233–1240 (2002)
M. Besson, J.R. Martin, Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J. Neurobiol. 62(3), 386–396 (2004)
J. Erber, T.H. Masuhr, R. Menzel, Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5(4), 343–358 (1980)
C. Schroll, T. Riemensperger, D. Bucher, J. Ehmer, T. Völler, K. Erbguth, B. Gerber, T. Hendel, G. Nagel, E. Buchner et al., Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16(17), 1741–1747 (2006)
C.J. Burke, W. Huetteroth, D. Owald, E. Perisse, M.J. Krashes, G. Das, D. Gohl, M. Silies, S. Certel, S. Waddell, Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492(7429):433–437 (2012)
M.J. Krashes, A.C. Keene, B. Leung, J.D. Armstrong, S. Waddell, Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53(1), 103–115 (2007)
W.B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20(1), 11–21 (1957)
S. Corkin, What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3(2), 153–160 (2002)
E.E. Smith, S.M. Kosslyn, Cognitive Psychology: Mind and Brain, 1st edn. (Pearson/Prentice Hall, Upper Saddle River, 2007)
B. Kolb, I.Q. Whishaw, Fundamentals of Human Neuropsychology, 4th edn. (W.H. Freeman, New York, 1996)
E.I. Moser, E. Kropff, M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)
C. Yellman, H. Tao, B. He, J. Hirsh, Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc. Nat. Acad. Sci. 94(8), 4131–4136 (1997)
Acknowledgments
Work on the model was funded by the EU grant no. 216227, SPARK II, call identifier FP7-2007-ICT-1. I am indebted to Paolo Arena for perfectly coordinating this EU project SPARK II and to all the members of the consortium for many fruitful discussions during the meetings. Christian Berg prepared early versions of figures 7–10 and intensively discussed the global model with me.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Strauss, R. (2014). Neurobiological Models of the Central Complex and the Mushroom Bodies. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-02362-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02361-8
Online ISBN: 978-3-319-02362-5
eBook Packages: EngineeringEngineering (R0)