Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 21))

  • 738 Accesses

Abstract

This Chapter describes a number of different scenarios and related experiments envisaged according to the various design principles for cognitive architectures. The primary approach taken into consideration was the biologically driven one, so the scenarios have been prepared at the aim to demonstrate how efficiently the insect brain computational model built succeeds in reproducing and enhancing the insect capabilities already addressed in Neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.S. Minnery, S.T. Mueller, M. Jones, The bica cognitive decathlon: a test suite for biologically-inspired cognitive agents, in Internal Report (2007).

    Google Scholar 

  2. L.N. Long, S.D. Hanford, Evaluating cognitive architectures for intelligent and autonomous unmanned vehicles, in AAAI Workshop (2007).

    Google Scholar 

  3. P. Arena, L. Patané, P.S. Termini, A. Vitanza, and R. Strauss, Software/hardware issues in modelling insect brain architecture, in 4th International Conference on Intelligent Robotics and Applications (ICIRA) (2011).

    Google Scholar 

  4. P. Arena, M. Cosentino, L. Patané, A. Vitanza. Sparkrs4cs: a software/hardware framework for cognitive architectures, in 5th SPIE’s International Symposium on Microtechnologies, pp. 1–12 (2011).

    Google Scholar 

  5. P. Arena, L. Patané, M. Pollino, C. Ventura. Tribot: a hybrid robot for cognitive algorithm implementation. in 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2010), pp. 1–6 (2010).

    Google Scholar 

  6. K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation memory in drosophila. Nature 453, 1244–1247 (2008)

    Article  Google Scholar 

  7. G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, Distinct memory traces for two visual features in the drosophila brain. Nature 439, 551–556 (2006)

    Article  Google Scholar 

  8. R. Ernst, M. Heisenberg, The memory template in drosophila pattern vision at the flight simulator. Vision Res. 39, 3920–3933 (1999)

    Article  Google Scholar 

  9. S. Tang, A. Guo, Choice behavior of drosophila facing contradictory visual cues. Science 294, 1543–1547 (1999)

    Article  Google Scholar 

  10. L. Liu, R. Wolf, R. Ernst, M. Heisenberg, Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400, 753–756 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Patanè .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arena, P., Patanè, L. (2014). Experimental Scenarios. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02362-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02361-8

  • Online ISBN: 978-3-319-02362-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics