Abstract
As seen in the Chap. 1, the fruit fly Drosophila melanogaster is an extremely interesting insect because it shows a wealth of complex behaviors, despite its small brain. Nowadays genetic techniques allow to knock out the function of defined parts or genes in the Drosophila brain. Together with specific mutants which show similar defects in those parts or genes, hypothesis about the functions of every single brain part can be drawn. Based upon the results reported in the Chap. 1, a computational model of the fly Drosophila has been designed and implemented to emulate the functionalities of the two relevant centres present in insects: the Mushroom Bodies and the Central Complex. Their actions and inter-actions are adapted from the neurobiological prospective to a computational implementation. A complete block scheme is proposed where the proved or conjectured interactions among the identified blocks are depicted. Several simulations results are finally provided to demonstrate the capability of the system both considering specific parts of the complete structure for comparison with insect experiments, and the whole model for more complex simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
B. Webb, T.R. Consi, Biorobotics: Methods and Applications (AAAI Press/MIT Press, Menlo Park, 2001)
M. Dorigo, T. Stutzle, Ant Colony Optimization (MIT Press, Cambridge, 2004)
M.V. Srinivasan, S. Zhang, M. Altwein, J. Tautz, Honeybee navigation: nature and calibration of the odometer. Science 287(5454), 851–853 (2000)
T.W. Secomb F.G. Barth, J.A.C. Humphrey, Locust’s looming detectors for robot sensors. in Sensors and sensing in biology and engineering, ed. by F. Rind, R. Santer, J. Blanchard, P. Verschure (springerwien, newyork, 2003)
B. Webb, T. Scutt, A simple latency dependent spiking neuron model of cricket phonotaxis. Biol. Cybern. 82(3), 247–269 (2000)
P. Arena, L. Fortuna, M. Frasca, L. Patané, M. Pavone, Realization of a CNN-driven cockroach-inspired robot, in International Conference on Circuits and Systems (ISCAS), 2006
J.T. Watson, R.E. Ritzmann, S.N. Zill, A.J. Pollack, Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics. J Comp Physiol A 188, 39–53 (2002)
H. Cruse, T. Kindermann, M. Schumm, J. Dean, J. Schmitz, Walknet a biologically inspired network to control six-legged walking. Neural Networks 11, 1435–1447 (1998)
B. Webb, J. Wessnitzer, Multimodal sensory integration in insects—towards insect brain control architectures. Bioinspiration Biomimetics 1, 63 (2006)
U. Homberg, Structure and functions of the central complex in insects. in Arthropod Brain, Its Evolution, Development, Structure and Functions, vol. 347–367, ed. by A.P Gupta, (Wiley, New York, 1987)
G.O. Lopez-Riquelme, W. Gronenberg, Multisensory convergence in the mushroom bodies of ants and bees. Acta. Biol. Hung. 55, 31–37 (2004)
P. Arena, L. Fortuna, M. Frasca, L. Patané, Learning anticipation via spiking networks: application to navigation control. IEEE Trans. Neural Networks 20(2), 202–216 (2009)
P. Arena, L. Patané, (eds.), Spatial temporal patterns for action-oriented perception in roving robots. in Cognitive Systems Monographs, vol. 1 (Springer, Berlin, 2009)
P.F.M.J. Verschure, T. Voegtlin, R.J. Douglas, Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620–624 (2003)
R. Brooks, New approaches to robotics. Science 253, 1227–1232 (1991)
R.C. Arkin, Behavior-Based Robotics (MIT Press, Cambridge, 1998)
P. Arena, L. Patané, P.S. Termini, Decision making processes in the fruit fly: a computational model. in Frontiers in Artificial Intelligence and Applications—Proceedings of the 21st Italian Workshop on Neural Nets, vol. 234 (Seville, Spain, 2011), pp. 284–291
E. Arena, P. Arena, L. Patané, Efficient hexapodal locomotion control based on flow-invariant subspaces. in 18th World Congress of the International Federation of Automatic Control (IFAC), Milan, Italy, 2011
G.M. Shepherd, Neurobiology (Oxford University, New York, 1997)
P. Arena, C. Berg, L. Patané, R. Strauss, P.S. Termini, An insect brain computational model inspired by Drosophila melanogaster: architecture description, WCCI 2010 IEEE World Congress on Computational Intelligence (Barcelona, Spain, 2010), pp. 831–837
P. Arena, M. Cosentino, L. Patané, A. Vitanza, Sparkrs4cs: a software/hardware framework for cognitive architectures, 5th SPIE’s International Symposium on Microtechnologies (Czech Republic, Prague, 2011), pp. 1–12
P. Arena, L. Patané, Simple sensors provide inputs for cognitive robots. Instrum. Measur. Mag. 12(3), 13–20 (2009)
E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)
R. Strauss, M. Mronz, Visual motion integration controls attractiveness of objects in walking flies and a mobile robot, International Conference on Intelligent Robots and Systems (Nice, France, 2008), pp. 3559–3564
L. Alba, P. Arena, S. De Fiore, L. Patane, R. Strauss, G. Vagliasindi, Implementation of a Drosophila-inspired model on the eye-ris platform. in Proceedings of the IEEE International Conference of CNNA (Berkley, 2010)
G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006)
H. Hoffmann, R. Moller, An extension of neural gas to local pca. Neurocomputing 62, 305–326 (2004)
P. Arena, S. De Fiore, L. Patané, P.S. Termini, R. Strauss, Visual learning in Drosophila: application on a roving robot and comparisons, 5th SPIE’s International Symposium on Microtechnologies (Czech Republic, Prague, 2011), pp. 1–12
K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation memory in Drosophila. Nature 453, 1244–1247 (2008)
R. Wehner, G. Hartmann, The ant’s path integration system: a neural architecture. Biol. Cybern. 73, 483–497 (1995)
R.L. Davis, X. Liu, Insect olfactory memory in time and space. Curr. Opin. Neurobiol. 6, 679–685 (2006)
J. Dubnau, C. Margulies, T. Tully, Deconstructing memory in Drosophila. Curr. Biol. 15, 700 (2005)
L.F. Abbott, S. Song, K.D. Miller, Competitive hebbian learning through spike-timing-dependent plasticity. Nat. Neurosci. 3, 919–926 (2000)
L.F. Abbott, S. Song, Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339–350 (2001)
P. Arena, S. De Fiore, L. Patané, M. Pollino, C. Ventura, Stdp-based behavior learning on tribot robot. in Proceedings of IEEE/RSJ International Conference SPIE (2009)
L. Vine, L. Gottschalk, P.J. Shaw, L. Seugnet, Y. Suzuki, D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr. Biol. 18, 1110–1117 (2008)
R. Biesinger, K.G. Gotz, Centrophobism in Drosophila melanogaster. Physiological approach to search and search control. J. Comp. Physiol. A 156, 329–337 (1987)
M.B. Sokolowski, S. De Belle, Heredity of rover/sitter: alternative foraging strategies of Drosophila melanogaster larvae. Heredity 5(9), 73–83 (1987)
J.R. Martin M. Besson, Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J. Neurobiol. 62, 386–394 (2005)
A. Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, L. Liu, G. Liu, H. Seiler, Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006)
P. Arena, L. Patané, P.S. Termini, A. Vitanza, R. Strauss, Software/hardware issues in modelling insect brain architecture. in 4th International Conference on Intelligent Robotics and Applications (ICIRA), Aachen (Germany), 2011
P. Arena, L. Patané, P.S. Termini, An insect brain computational model inspired by Drosophila melanogaster: simulation results, WCCI 2010 IEEE World Congress on Computational Intelligence (Barcelona, Spain, 2010), pp. 838–845
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Arena, P., Patanè, L., Termini, P.S. (2014). A Computational Model for the Insect Brain. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-02362-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02361-8
Online ISBN: 978-3-319-02362-5
eBook Packages: EngineeringEngineering (R0)