Abstract
In this chapter the novel concept of Compact Internal Representation (CIR) is introduced as a generalization of the internal representation extensively used in literature as a base for cognition and consciousness. CIR is suitable to represent dynamic environments and their potential interactions with the agent as static (time-independent) structures, suitable to be stored, managed, compared and recovered by memory. In this work the application of CIR as the cognitive core of moving autonomous artificial agents is presented in the context of collision avoidance against dynamical obstacles. The structure that emerges, even if not directly related to the insect neurobiology, is quite simple and could enhance the capabilities of the computational model already presented in the previous chapter, in view of its robotic implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Corresponding videos can be found at http://www.mat.ucm.es/~vmakarov/IRNN.html.
References
E.I. Moser, M.B. Moser, A metric for space. Hippocampus 12(18), 1142–115 (2008)
F. Savelli, D. Yoganarasimha, J.J. Knierim, Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 12(18), 1270–1282 (2008)
J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1(34), 171–175 (1971)
C. Barry, C. Lever, R. Hayman, T. Hartley, S. Burton, J. O’Keefe, K. Jeffery, N. Burgess, The boundary vector cell model of place cell firing and spatial memory. Rev. Neurosci. 17(1–2), 71–97 (2006)
J.S. Taube, R.U. Muller, J.B. Ranck, Head-direction cells recorded from the postsubiculum in freely moving rats. i. description and quantitative analysis. J. Neurosci. 10, 420–435 (1990)
J.S. Taube, R.U. Muller, J.B. Ranck, Head-direction cells recorded from the postsubiculum in freely moving rats. ii. effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990)
T. Hafting, M. Fyhn, S. Molden, M.B. Moser, E.I. Moser, Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2004)
E.I. Moser, E. Kropff, M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system. Ann. Rev. Neurosci. 31, 69–89 (2008)
T. Solstad, C.N. Boccara, E. Kropff, M.B. Moser, E.I. Moser, Representation of geometric borders in the entorhinal cortex. Science 5909(322), 1865–1868 (2008)
J. Sharma, V. Dragoi, J.B. Tenenbaum, E.K. Miller, M. Sur, V1 neurons signal acquisition of an internal representation of stimulus location. Science 300, 1758–1763 (2003)
O. Holland, R. Goodman, Robots with internal models–a route to machine consciousness? J. Conscious. Stud. 10, 77–109 (2003)
J. McIntyre, M. Zago, A. Berthoz, F. Lacquaniti, Does the brain model newton’s laws? Nat. Neurosci. 4, 693–694 (2001)
G. Rizzolatti, L. Fogassi, V. Gallese, Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001)
M.A. Umilta, E. Kohler, V. Gallese, L. Fogassi, L. Fadiga, C. Keysers, G. Rizzolatti, I know what you are doing: a neurophysiological study. Neuron 32, 91–101 (2001)
K. Craik, The nature of explanation (Cambridge University (in press), Cambridge, 1943).
G. Hesslow, Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci. 6, 242–247 (2002)
H. Cruse, The evolution of cognition a hypothesis. Cogn. Sci. 27, 135–155 (2003)
S. Kuhn, H. Cruse, Static mental representations in recurrent neural networks for the control of dynamic behavioural sequences. Conn. Sci. 17, 343–360 (2005)
M.J. Aitkenhead, A.J.S McDonald, The state of play in machine/environment interactions. Artif Intell Rev. 25, 247–276 (2006)
V. Mohan, P. Morasso, Towards reasoning and coordinating action in the mental space. Int. J. Neural. Syst. 17, 329–341 (2007)
U. Steinkuhler, H. Cruse, A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol. Cybern. 79, 457–466 (1998)
S. Kuhn, H. Cruse, Modelling memory functions with recurrent neural networks consisting of input compensation units: Ii. dynamic situations. Biol. Cybern. 96, 471–486 (2007)
S. Kuhn, W.J. Beyn, H. Cruse, Modelling memory functions with recurrent neural networks consisting of input compensation units: I. static situations. Biol. Cybern. 96, 455–470 (2007)
H. Cruse, D. Hubner, Selforganizing memory: active learning of landmarks used for navigation. Biol. Cybern. 99, 219–236 (2008)
V.A. Makarov, Y. Song, M.G. Velarde, D. Hubner, H. Cruse, Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biol. Cybern. 98, 371–395 (2008)
H. Svensson, A. Morse, T. Ziemke, Representation as internal simulation: a minimalistic robotic model. In Proceedings CogSci’09, pp 2890–2895, (2009).
M. Toussaint, A sensorimotor map: modulating lateral interactions for anticipation and planning. Neural. Comput. 18, 1132–1155 (2006)
D. Keymeulen, J. Decuyper, The fluid dynamics applied to mobile robot motion: the stream field method. In Proceedings of the IEEE International Conference on Robotics and Automation 1, 378–385 (1994)
S. Sundar, Z. Shiller, Optimal obstacle avoidance based on the hamilton-jacobi-bellman equation. IEEE Trans. Robot. Autom. 2(13), 305–310 (1997)
A.P. Munuzuri, L.O. Chua, Shortest-path-finder algorithm in a two-dimensional array of nonlinear electronic circuits. Int. J. Bifurcat. Chaos. 12(8), 2493–2501 (1998)
S. Waydo, R.M. Murray, Vehicle motion planning using streamfunctions. 2, 2484–2491 (2003)
A. Adamatzky, P. Arena, A. Basile, R. Carmona-Galan, B.D.L Costello, L. Fortuna, M. Frasca, A. Rodriguez-Vazquez, Reaction-diffusion navigation robot control from chemical to vlsi analogic processors. IEEE Trans. Circuits. Syst. 51(5), 926–938, (2004).
R. Barzamini, M.B. Motamedinejad, J. Jouzdani, A (Khosravi, A new fuzzypathplanning for multiple robots, 2006), pp. 295–300
G.K. Schmidt, K (Azarm, Mobile robot navigation in a dynamic world using an unsteady diffusion equation strategy, 1992), pp. 642–647
C. Louste, A. Liegeois, Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J. Intell. Robot. Syst. 1–2(27), 99–112 (2000)
A.A. Masoud, S.A. Masoud, M.M. Bayoumi, Robot navigation using a pressure generated mechanical stress field: the biharmonic potential field approach. pp. 124–129, (1994).
Y.F. Wang, G.S. Chirikjian, A new potential field method for robot path, planning. pp. 977–982, 2000.
L. Guan-Chun, L. Wei-Wen, Dynamic mobile robot navigation using potential field based immune network. Systemics, Cybern. Inf. 2(5), 43–50 (2006).
V.I. Utkin, H. Hashimoto, Robot obstacle avoiding in n-dimensional space using planar harmonic artificial potential fields. J. Dyn. Syst, Meas. Contr. 119, 160–166 (1997).
J.B. Burns, C.I. Connolly, R. Weiss, Path planning using laplaces equation. In IEEE International Conference on Robotics and Automation, pp. 2101–2106, 1990.
L.E. Kavraki, Computation of configuration-space obstacles using the fast fourier transform. IEEE Trans. Robot. Autom. 3(11), 408–413 (1995)
O. Uzol, I. Yavrucuk, N (Sezer-Uzol, Collaborative target tracking for swarming mavs using potential fields and panel methods, 2008)
Q. Cao, Y. Huang, J. Zhou, An evolutionary artificial potential field algorithm for dynamic path planning of mobile robot. 1, 3331–3336 (2006)
T.S. Collett, J. Zeil, Spatial representation in animals, chapter Places and landmarks: an arthropod perspective. pp 18–53. Oxford University (in Press), 1998.
R. Menzel, R. Brandt, A. Gumbert, B. Komischke, J. Kunze, Two spatial memories for honeybee navigation. Proceedings R. Soc. Lond. B 267, 961–968 (2000)
B.C. Berg, Random walks in biology (Princeton University, Princeton, 1993)(in Press).
V.A. Makarov, J.A. Villacorta-Atienza, in Recurrent Neural Networks for Temporal Data Processing, ed. by H. Cardot, INTECH. Compact internal representation as a functional basis for protocognitive exploration of dynamic environments (2011)
V.I. Nekorkin, V.A. Makarov, Spatial chaos in a chain of coupled bistable oscillators. Phys. Rev. Lett. 74, 4819–4822 (1995)
V.I. Nekorkin, V.A. Makarov, V.B. Kazantsev, M.G. Velarde, Spatial disorder and pattern formation in lattices of coupled elements. Physica D 100, 330–342 (1997)
R.R. Llinas, I of the vortex: from neurons to self. MIT, 2001.
J.A. Villacorta-Atienza, V.A. Makarov, Neural network architecture for cognitive navigation in dynamic environments, IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2013.2271645 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Villacorta-Atienza, J., Velarde, M., Makarov, V. (2014). Compact Internal Representation of Dynamic Environments: Simple Memory Structures for Complex Situations. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-02362-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02361-8
Online ISBN: 978-3-319-02362-5
eBook Packages: EngineeringEngineering (R0)