Skip to main content

Compact Internal Representation of Dynamic Environments: Simple Memory Structures for Complex Situations

  • Chapter
  • First Online:
Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 21))

  • 756 Accesses

Abstract

In this chapter the novel concept of Compact Internal Representation (CIR) is introduced as a generalization of the internal representation extensively used in literature as a base for cognition and consciousness. CIR is suitable to represent dynamic environments and their potential interactions with the agent as static (time-independent) structures, suitable to be stored, managed, compared and recovered by memory. In this work the application of CIR as the cognitive core of moving autonomous artificial agents is presented in the context of collision avoidance against dynamical obstacles. The structure that emerges, even if not directly related to the insect neurobiology, is quite simple and could enhance the capabilities of the computational model already presented in the previous chapter, in view of its robotic implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Corresponding videos can be found at http://www.mat.ucm.es/~vmakarov/IRNN.html.

References

  1. E.I. Moser, M.B. Moser, A metric for space. Hippocampus 12(18), 1142–115 (2008)

    Article  Google Scholar 

  2. F. Savelli, D. Yoganarasimha, J.J. Knierim, Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 12(18), 1270–1282 (2008)

    Article  Google Scholar 

  3. J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1(34), 171–175 (1971)

    Article  Google Scholar 

  4. C. Barry, C. Lever, R. Hayman, T. Hartley, S. Burton, J. O’Keefe, K. Jeffery, N. Burgess, The boundary vector cell model of place cell firing and spatial memory. Rev. Neurosci. 17(1–2), 71–97 (2006)

    Google Scholar 

  5. J.S. Taube, R.U. Muller, J.B. Ranck, Head-direction cells recorded from the postsubiculum in freely moving rats. i. description and quantitative analysis. J. Neurosci. 10, 420–435 (1990)

    Google Scholar 

  6. J.S. Taube, R.U. Muller, J.B. Ranck, Head-direction cells recorded from the postsubiculum in freely moving rats. ii. effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990)

    Google Scholar 

  7. T. Hafting, M. Fyhn, S. Molden, M.B. Moser, E.I. Moser, Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2004)

    Article  Google Scholar 

  8. E.I. Moser, E. Kropff, M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system. Ann. Rev. Neurosci. 31, 69–89 (2008)

    Article  Google Scholar 

  9. T. Solstad, C.N. Boccara, E. Kropff, M.B. Moser, E.I. Moser, Representation of geometric borders in the entorhinal cortex. Science 5909(322), 1865–1868 (2008)

    Article  Google Scholar 

  10. J. Sharma, V. Dragoi, J.B. Tenenbaum, E.K. Miller, M. Sur, V1 neurons signal acquisition of an internal representation of stimulus location. Science 300, 1758–1763 (2003)

    Article  Google Scholar 

  11. O. Holland, R. Goodman, Robots with internal models–a route to machine consciousness? J. Conscious. Stud. 10, 77–109 (2003)

    Google Scholar 

  12. J. McIntyre, M. Zago, A. Berthoz, F. Lacquaniti, Does the brain model newton’s laws? Nat. Neurosci. 4, 693–694 (2001)

    Article  Google Scholar 

  13. G. Rizzolatti, L. Fogassi, V. Gallese, Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001)

    Article  Google Scholar 

  14. M.A. Umilta, E. Kohler, V. Gallese, L. Fogassi, L. Fadiga, C. Keysers, G. Rizzolatti, I know what you are doing: a neurophysiological study. Neuron 32, 91–101 (2001)

    Google Scholar 

  15. K. Craik, The nature of explanation (Cambridge University (in press), Cambridge, 1943).

    Google Scholar 

  16. G. Hesslow, Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci. 6, 242–247 (2002)

    Article  Google Scholar 

  17. H. Cruse, The evolution of cognition a hypothesis. Cogn. Sci. 27, 135–155 (2003)

    Google Scholar 

  18. S. Kuhn, H. Cruse, Static mental representations in recurrent neural networks for the control of dynamic behavioural sequences. Conn. Sci. 17, 343–360 (2005)

    Article  Google Scholar 

  19. M.J. Aitkenhead, A.J.S McDonald, The state of play in machine/environment interactions. Artif Intell Rev. 25, 247–276 (2006)

    Article  Google Scholar 

  20. V. Mohan, P. Morasso, Towards reasoning and coordinating action in the mental space. Int. J. Neural. Syst. 17, 329–341 (2007)

    Article  Google Scholar 

  21. U. Steinkuhler, H. Cruse, A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol. Cybern. 79, 457–466 (1998)

    Article  Google Scholar 

  22. S. Kuhn, H. Cruse, Modelling memory functions with recurrent neural networks consisting of input compensation units: Ii. dynamic situations. Biol. Cybern. 96, 471–486 (2007)

    Article  MathSciNet  Google Scholar 

  23. S. Kuhn, W.J. Beyn, H. Cruse, Modelling memory functions with recurrent neural networks consisting of input compensation units: I. static situations. Biol. Cybern. 96, 455–470 (2007)

    Article  MathSciNet  Google Scholar 

  24. H. Cruse, D. Hubner, Selforganizing memory: active learning of landmarks used for navigation. Biol. Cybern. 99, 219–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. V.A. Makarov, Y. Song, M.G. Velarde, D. Hubner, H. Cruse, Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biol. Cybern. 98, 371–395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Svensson, A. Morse, T. Ziemke, Representation as internal simulation: a minimalistic robotic model. In Proceedings CogSci’09, pp 2890–2895, (2009).

    Google Scholar 

  27. M. Toussaint, A sensorimotor map: modulating lateral interactions for anticipation and planning. Neural. Comput. 18, 1132–1155 (2006)

    Article  MATH  Google Scholar 

  28. D. Keymeulen, J. Decuyper, The fluid dynamics applied to mobile robot motion: the stream field method. In Proceedings of the IEEE International Conference on Robotics and Automation 1, 378–385 (1994)

    Google Scholar 

  29. S. Sundar, Z. Shiller, Optimal obstacle avoidance based on the hamilton-jacobi-bellman equation. IEEE Trans. Robot. Autom. 2(13), 305–310 (1997)

    Article  Google Scholar 

  30. A.P. Munuzuri, L.O. Chua, Shortest-path-finder algorithm in a two-dimensional array of nonlinear electronic circuits. Int. J. Bifurcat. Chaos. 12(8), 2493–2501 (1998)

    Article  Google Scholar 

  31. S. Waydo, R.M. Murray, Vehicle motion planning using streamfunctions. 2, 2484–2491 (2003)

    Google Scholar 

  32. A. Adamatzky, P. Arena, A. Basile, R. Carmona-Galan, B.D.L Costello, L. Fortuna, M. Frasca, A. Rodriguez-Vazquez, Reaction-diffusion navigation robot control from chemical to vlsi analogic processors. IEEE Trans. Circuits. Syst. 51(5), 926–938, (2004).

    Google Scholar 

  33. R. Barzamini, M.B. Motamedinejad, J. Jouzdani, A (Khosravi, A new fuzzypathplanning for multiple robots, 2006), pp. 295–300

    Google Scholar 

  34. G.K. Schmidt, K (Azarm, Mobile robot navigation in a dynamic world using an unsteady diffusion equation strategy, 1992), pp. 642–647

    Google Scholar 

  35. C. Louste, A. Liegeois, Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J. Intell. Robot. Syst. 1–2(27), 99–112 (2000)

    Article  Google Scholar 

  36. A.A. Masoud, S.A. Masoud, M.M. Bayoumi, Robot navigation using a pressure generated mechanical stress field: the biharmonic potential field approach. pp. 124–129, (1994).

    Google Scholar 

  37. Y.F. Wang, G.S. Chirikjian, A new potential field method for robot path, planning. pp. 977–982, 2000.

    Google Scholar 

  38. L. Guan-Chun, L. Wei-Wen, Dynamic mobile robot navigation using potential field based immune network. Systemics, Cybern. Inf. 2(5), 43–50 (2006).

    Google Scholar 

  39. V.I. Utkin, H. Hashimoto, Robot obstacle avoiding in n-dimensional space using planar harmonic artificial potential fields. J. Dyn. Syst, Meas. Contr. 119, 160–166 (1997).

    Google Scholar 

  40. J.B. Burns, C.I. Connolly, R. Weiss, Path planning using laplaces equation. In IEEE International Conference on Robotics and Automation, pp. 2101–2106, 1990.

    Google Scholar 

  41. L.E. Kavraki, Computation of configuration-space obstacles using the fast fourier transform. IEEE Trans. Robot. Autom. 3(11), 408–413 (1995)

    Article  Google Scholar 

  42. O. Uzol, I. Yavrucuk, N (Sezer-Uzol, Collaborative target tracking for swarming mavs using potential fields and panel methods, 2008)

    Google Scholar 

  43. Q. Cao, Y. Huang, J. Zhou, An evolutionary artificial potential field algorithm for dynamic path planning of mobile robot. 1, 3331–3336 (2006)

    Google Scholar 

  44. T.S. Collett, J. Zeil, Spatial representation in animals, chapter Places and landmarks: an arthropod perspective. pp 18–53. Oxford University (in Press), 1998.

    Google Scholar 

  45. R. Menzel, R. Brandt, A. Gumbert, B. Komischke, J. Kunze, Two spatial memories for honeybee navigation. Proceedings R. Soc. Lond. B 267, 961–968 (2000)

    Article  Google Scholar 

  46. B.C. Berg, Random walks in biology (Princeton University, Princeton, 1993)(in Press).

    Google Scholar 

  47. V.A. Makarov, J.A. Villacorta-Atienza, in Recurrent Neural Networks for Temporal Data Processing, ed. by H. Cardot, INTECH. Compact internal representation as a functional basis for protocognitive exploration of dynamic environments (2011)

    Google Scholar 

  48. V.I. Nekorkin, V.A. Makarov, Spatial chaos in a chain of coupled bistable oscillators. Phys. Rev. Lett. 74, 4819–4822 (1995)

    Article  Google Scholar 

  49. V.I. Nekorkin, V.A. Makarov, V.B. Kazantsev, M.G. Velarde, Spatial disorder and pattern formation in lattices of coupled elements. Physica D 100, 330–342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. R.R. Llinas, I of the vortex: from neurons to self. MIT, 2001.

    Google Scholar 

  51. J.A. Villacorta-Atienza, V.A. Makarov, Neural network architecture for cognitive navigation in dynamic environments, IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2013.2271645 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Villacorta-Atienza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villacorta-Atienza, J., Velarde, M., Makarov, V. (2014). Compact Internal Representation of Dynamic Environments: Simple Memory Structures for Complex Situations. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02362-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02361-8

  • Online ISBN: 978-3-319-02362-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics