Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 21))

  • 805 Accesses

Abstract

To evaluate the capabilities of the insect brain model different robotic platforms have been considered. The different blocks of the cognitive architecture, inspired by MBs and CX, can be used as control systems both for legged and wheeled robots. This chapter reports the characteristics of the robotic platforms including information on the mechanical structure, sensory system, software and hardware low level control architecture. In particular the wheeled robot considered is the Pioneer P3AT, a commercial platform for indoor and outdoor applications, suitably modified to host new sensors and control boards. Concerning legged and hybrid robots, a series of robots have been developed to exploit the insect brain main functions on different platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.L. Anafocus, Eye-ris producer home page, http://www.anafocus.com

  2. B. Webb, T. Scutt, A simple latency dependent spiking neuron model of cricket phonotaxis. Biol. Cybern. 82(3), 247–269 (2000)

    Article  Google Scholar 

  3. R. Reeve, B. Webb, New neural circuits for robot phonotaxis. Philos. Trans. Roy. Soc. A 361, 2245–2266 (2002)

    Article  MathSciNet  Google Scholar 

  4. Mobile Robots. P3-at vendor, http://www.mobilerobots.com/

  5. L. Alba, P. Arena, S. De Fiore, L. Patané, R. Strauss, G. Vagliasindi, Implementation of a drosophila-inspired model on the eye-ris platform. in Proceedings of the IEEE International Conference of CNNA, Berkley

    Google Scholar 

  6. P. Arena, S. De fiore, L. Patané, Cellular nonlinear networks for the emergence of perceptual states: Application to robot navigation control. Neural Netw 22(5–6), 801–811 (2009)

    Google Scholar 

  7. P. Arena, L. Fortuna, M. Frasca, L. Patané, M. Pollino, An autonomous mini-hexapod robot controlled through a CNN-based CPG VLSI chip. in 10th IEEE International Workshop on Cellular Neural Networks and their Applications (Istanbul, 2006), pp. 401–406

    Google Scholar 

  8. G. Gabrielli, T.H.von Karman, What price speed?. Mech. Eng. 72(10), 775–781 (1950)

    Google Scholar 

  9. P. Arena, L. Patané (Eds.), Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots, Vol. 1, (Series: Cognitive Systems Monographs, Springer 2009)

    Google Scholar 

  10. SCHUNK GmbH and Co. Schunk home page, http://www.schunk.com

  11. DLR Institute. Institute of robotics and mechatronics home page, http://www.dlr.de

  12. Lynxmotion, Inc. Lynxmotion home page, http://www.lynxmotion.com

  13. Robotis, Corporation. Robotis home page, http://www.robotis.com

  14. Dassault Systemes SolidWorks Corp. Solidworks home page, http://www.solidworks.com

  15. I. Aleo, P. Arena, L. Patané, SARSA-based reinforcement learning for motion planning in serial manipulators, WCCI 2010 IEEE World Congress on Computational Intelligence (Barcelona, Spain, 2007), pp. 3605–3610

    Google Scholar 

  16. P. Arena, H. Cruse, L. Fortuna, L. Patané, An obstacle avoidance method for a redundant manipulator controlled through a recurrent neural network. in Proceedings of Microtechnologies for the New Millennium (SPIE 07) (Gran Canaria (SPAIN), 2007)

    Google Scholar 

  17. I. Aleo, P. Arena, L. Patane, Parallel central pattern generators for locomotion control in a humanoid robot model. in 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2010) (Dresden, 2010)

    Google Scholar 

  18. P. Arena, S. De Fiore, L. Patané, M. Pollino, C. Ventura, Insect inspired unsupervised learning for tactic and phobic behavior enhancement in a hybrid robot, WCCI 2010 IEEE World Congress on Computational Intelligence (Barcelona, Spain, 2010), pp. 2417–2424

    Google Scholar 

  19. P. Arena, L. Patané, M. Pollino, C. Ventura, Tribot: a hybrid robot for cognitive algorithm implementation. in 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2010), pp. 1–6

    Google Scholar 

  20. Case Biorobotics Lab. Whegs series robots home page, http://biorobots.cwru.edu/projects/whegs/whegs.html

  21. Robovolc project. Robovolc project home page, http://www.robovolc.dees.unict.it/

  22. J.E. Seipel, P.J. Holmes, R.J. Full, Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions. Biol. Cybern. 91(2), 76–90 (2004)

    MATH  Google Scholar 

  23. M. Eich, F. Grimminger, S. Bosse, D. Spenneberg, F. Kirchner, Asguard: A hybrid legged-wheel security and sar-robot using bio-inspired locomotion for rough terrain, in Proceedings of the EURON/IARP International Workshop on Robotics for Risky Interventions and Surveillance of the Environment, Benicassim Spain, January, 2008

    Google Scholar 

  24. P Arena, L Fortuna, M Frasca, L Patané, M. Pavone, Implementation and experimental validation of an autonomous hexapod robot. in Proceedings of IEEE International Symposium on Circuits and Systems (Kos, May, 2006), pp. 401–406

    Google Scholar 

  25. Tarry project. Tarry robot home page, http://www.tarry.de/

  26. S. Baglio, S. Gagliano, D. Neri, N. Savalli, G.M. Tina, Optimal design of photovoltaic systems for wireless sensor networks, IEEE International Conference on Symposium on Industrial Electronics (Cambridge, 2008), pp. 2108–2113

    Google Scholar 

  27. L. Patané, S. Hellbach, F. André, P. Durr, V. Arena, An insect-inspired bionic sensor for tactile localisation and material classification with state-dependent modulation. Front. Neurorobotics 6(8), 1–18 (2012)

    Google Scholar 

  28. P. Arena, L. Patané, A spiking network for object and ego-motion detection in roving robots. in International Joint Conference on Neural Networks (IJCNN 2012) (Brisbane, 2012)

    Google Scholar 

  29. P. Arena, S. De Fiore L Patané, M. Pollino, C. Ventura, Stdp-based behavior learning on tribot robot. in Proceedings of IEEE/RSJ International Conference SPIE (2009), pp. 1–12

    Google Scholar 

  30. R.T. Schroer, M.J. Boggess, R.J. Bachmann, R.D. Quinn, R.E. Ritzmann, Comparing cockroach and whegs robot body motions, IEEE International Conference on Robotics and Automation (New Orleans, May, 2004), pp. 3288–3293

    Google Scholar 

  31. P. Arena, L. Fortuna, M. Frasca, L. Patané, Learning anticipation via spiking networks: application to navigation control. IEEE Trans. Neural Netw. 20(2), 202–216 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Patanè .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aleo, I., Arena, P., De Fiore, S., Patanè, L., Pollino, M., Ventura , C. (2014). Robotic Platforms. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Cognitive Systems Monographs, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02362-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02362-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02361-8

  • Online ISBN: 978-3-319-02362-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics