Abstract
We present two efficient algorithms which, given a compressed representation of a string w of length N, compute the Lyndon factorization of w. Given a straight line program (SLP) \(\mathcal{S}\) of size n and height h that describes w, the first algorithm runs in O(nh(n + logN logn)) time and O(n 2) space. Given the Lempel-Ziv 78 encoding of size s for w, the second algorithm runs in O(s logs) time and space.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02432-5_33
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Mathematical Systems Theory 28(2), 89–108 (1995)
Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)
Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)
Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)
Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factorizing words. Theor. Comput. Sci. 127(1), 53–67 (1994)
Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR abs/1201.3077 (2012)
I, T., Matsubara, W., Shimohira, K., Inenaga, S., Bannai, H., Takeda, M., Narisawa, K., Shinohara, A.: Detecting regularities on grammar-compressed strings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 571–582. Springer, Heidelberg (2013)
I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Efficient lyndon factorization of grammar compressed text. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 153–164. Springer, Heidelberg (2013)
Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)
Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(5), 1061–1066 (2003)
Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M. (2013). Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text. In: Kurland, O., Lewenstein, M., Porat, E. (eds) String Processing and Information Retrieval. SPIRE 2013. Lecture Notes in Computer Science, vol 8214. Springer, Cham. https://doi.org/10.1007/978-3-319-02432-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-02432-5_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02431-8
Online ISBN: 978-3-319-02432-5
eBook Packages: Computer ScienceComputer Science (R0)