Interpolation Properties and SAT-based Model Checking*

Arie Gurfinkel ${ }^{1}$, Simone Fulvio Rollini ${ }^{2}$, and Natasha Sharygina ${ }^{2}$
${ }^{1}$ Software Engineering Institute, CMU
arie@cmu.edu
${ }^{2}$ Formal Verification Lab, University of Lugano
\{simone.fulvio.rollini, natasha.sharygina\}@usi.ch

Abstract

Craig interpolation is a widespread method in verification, with important applications such as Predicate Abstraction, CounterExample Guided Abstraction Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model checking techniques based on interpolation require collections of interpolants to satisfy particular properties, to which we refer as "collectives"; they do not hold in general for all interpolation systems and have to be established for each particular system and verification environment. Nevertheless, no systematic approach exists that correlates the individual interpolation systems and compares the necessary collectives. This paper proposes a uniform framework, which encompasses (and generalizes) the most common collectives exploited in verification. We use it for a systematic study of the collectives and of the constraints they pose on propositional interpolation systems used in SAT-based model checking.

1 Introduction

Craig interpolation is a popular approach in verification 1312 with notable applications such as Predicate Abstraction [9, CounterExample Guided Abstraction Refinement (CEGAR) [6], and Lazy Abstraction With Interpolants (LAWI) 14].

Formally, given two formulae A and B such that $A \wedge B$ is unsatisfiable, a Craig interpolant is a formula I such that A implies I, I is inconsistent with B and I is defined over the atoms (i.e., propositional variables) common to A and B. It can be seen as an over-approximation of A that is still inconsistent with $B 3$. In model checking applications, A typically encodes some finite program traces, and B denotes error locations. In this case, an interpolant I represents a set of safe states that over-approximate the states reachable in A.

In most verification tasks, a single interpolant, i.e., a single subdivision of constraints into two groups A and B, is not sufficient. For example, consider

[^0]the refinement problem in CEGAR: given a spurious error trace $\pi=\tau_{1}, \ldots, \tau_{n}$, where τ_{i} is a program statement, find a set of formulae X_{0}, \ldots, X_{n} such that $X_{0}=\mathrm{T}, X_{n}=\perp$, and for $1 \leq i \leq n$, the Hoare triples $\left\{X_{i-1}\right\} \tau_{i}\left\{X_{i}\right\}$ are valid. The sequence $\left\{X_{i}\right\}$ justifies that the error trace is infeasible and is used to refine the abstraction. The solution is a sequence of interpolants $\left\{I_{i}\right\}_{i=1}^{n}$ such that: $I_{i}=\operatorname{Itp}\left(\tau_{1} \ldots \tau_{i} \mid \tau_{i+1} \ldots \tau_{n}\right)$ and $I_{i-1} \wedge \tau_{i} \Longrightarrow I_{i}$. That is, in addition to requiring that each I_{i} is an interpolant between the prefix (statements up to position i in the trace) and the suffix (statements following position i), the sequence $\left\{I_{i}\right\}$ of interpolants must be inductive: this property is known as the path interpolation property [17].

Other properties (e.g., simultaneous abstraction, interpolation sequence, path, symmetric-, and tree-interpolation) are used in existing verification frameworks such as IMPACT [14], Whale [1, FunFrog [19] and eVolCheck [20, which implement instances of Predicate Abstraction [8, Lazy Abstraction with Interpolation [14], Interpolation-based Function Summarization [19] and Upgrade Checking [20. These properties, to which we refer as collectives since they concern collections of interpolants, are not satisfied by arbitrary sequences of Craig interpolants and must be established for each interpolation algorithm and verification technique.

This paper performs a systematic study of collectives in verification and identifies the particular constraints they pose on propositional interpolation systems used in SAT-based model checking. The SAT-based approach provides bit-precise reasoning which is essential both in software and hardware applications, e.g., when dealing with pointer arithmetic and overflow. To-date, there exist successful tools which perform SAT-based model checking (such as CBMC 4 and SATABS5), and which integrate it with interpolation (for example, eVolCheck and FunFrog). However, there is no a framework which would correlate the existing interpolation systems and compare the various collectives. This work addresses the problem and contributes as follows:

Contribution 1: This paper, for the first time, collects, identifies, and uniformly presents the most common collectives imposed on interpolation by existing verification approaches (see \$22).

In addition to the issues related to a diversity of interpolation properties, it is often desirable to have flexibility in choosing different algorithms for computing different interpolants in a sequence $\left\{I_{i}\right\}$, rather than using a single interpolation algorithm (or interpolation system) Itp $_{S}$, as assumed in the path interpolation example above. To guarantee such a flexibility, this paper presents a framework which generalizes the traditional setting consisting of a single interpolation system to allow for sequences, or families, of interpolation systems. For example, given a family of systems $\mathcal{F}=\left\{\operatorname{Itp}_{S_{i}}\right\}_{i=1}^{n}$, let $I_{i}=\operatorname{Itp}{S_{i}}\left(\tau_{1}, \ldots \tau_{i} \mid \tau_{i+1} \ldots \tau_{n}\right)$. If the resulting sequence of interpolants $\left\{I_{i}\right\}$ satisfies the condition of path interpolation, we say that the family \mathcal{F} has the path interpolation property.

[^1]Families find practical applicability in several context: $\sqrt[6]{6}$. One example is LAWI-style verification, where it is desirable to obtain a path interpolant $\left\{I_{i}\right\}$ with weak interpolants at the beginning (i.e., I_{1}, I_{2}, \ldots) and strong interpolants at the end (i.e., \ldots, I_{n-1}, I_{n}). This would increase the likelihood of the sequence to be inductive and can be achieved by using a family of systems of different strength. Another example is software Upgrade Checking, where function summaries are computed by interpolation. Different functions in a program could require different levels of abstraction by means of interpolation. A system that generates stronger interpolants can yield a tighter abstraction, more closely reflecting the behavior of the corresponding function. On the other hand, a system that generates weaker interpolants would give an abstraction which is more "tolerant" and is more likely to remain valid when the function is updated.

Contribution 2: This paper systematically studies the collectives and the relationships among them; in particular, it shows that for families of interpolation systems the collectives form a hierarchy, whereas for a single system all but two (i.e., path interpolation and simultaneous abstraction) are equivalent (see §3).

Another issue which this paper deals with is the fact that there exist different approaches for generating interpolants. One is to use specialized algorithms: examples are procedures based on constraint solving (e.g., [18]), machine learning (e.g., [21), and, even, pure verification algorithms like IC3 [2] and PDR (4) that can be viewed as computing a path interpolation sequence. A second, wellknown approach is to extract an interpolant of $A \wedge B$ from a resolution proof of unsatisfiability of $A \wedge B$. Examples are the algorithm by Pudlák [16] (also independently proposed by Huang [7] and by Krajíček [10), the algorithm by McMillan [11, and the Labeled Interpolation Systems (LISs) of D'Silva et al. [3, the latter being the most general version of this approach.

The variety of interpolation algorithms makes it difficult to reason about their properties in a systematic manner. At a low level of representation, the challenge is determined by the complexity of individual algorithms and by the diversity among them, which makes it hard to study them uniformly. On the other hand, at a high level, where the details are hidden, not many interesting results can be obtained. For this reason, this paper adopts a twofold approach, working both at a high and at a low level of representation: at the high level, we give a global view of the entire collection of properties and of their relationships and hierarchy; at the low level, we obtain additional stronger results for concrete interpolation systems. In particular, we first investigate the properties of interpolation systems treating them as black boxes, and then focus on the propositional LISs. In the paper, the results of $\$ 3$ apply to arbitrary interpolation algorithms, while those of $\mathbb{\$}$ apply to LISs.

Contribution 3: For the first time, this paper gives both sufficient and necessary conditions for a family of LISs and for a single LIS to enjoy each of the collectives. In particular, we show that in case of a single system path interpo-

[^2]lation is common to all LISs, while simultaneous abstraction is as strong as all other properties. Concrete applications of our results are also discussed (see §4).

Contribution 4. We developed an interpolating prover, PeRIPLO, implementing the proposed framework as discussed in §5 PeRIPLO is currently employed for solving and interpolation by the FunFrog and eVolcheck tools.
Related Work. To our knowledge, despite interpolation being an important component of verification, no systematic investigation of verification-related requirements for interpolants has been done prior to this paper. One exception is the work by the first two authors [17, that studies a subset of the properties in the context of LISs. This paper significantly extends the results of that work by considering the most common collectives used in verification, at the same time addressing a wider class of interpolation systems. Moreover, for LISs, it provides both the necessary and sufficient conditions for each property.

2 Interpolation Systems

In this section we introduce the basic notions of interpolation, and then proceed to discuss the collectives. Among several possible styles of presentation, we chose the one that highlights te use of collectives in the context of model checking. We employ the standard convention of identifying conjunctions of formulae with sets of formulae and concatenation with conjunction, whenever convenient. For example, we interchangeably use $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and $\phi_{1} \cdots \phi_{n}$ for $\phi_{1} \wedge \ldots \wedge \phi_{n}$. Interpolation System. An interpolation system Itp ${ }_{S}$ is a function that, given an inconsistent $\Phi=\left\{\phi_{1}, \phi_{2}\right\}$, returns a Craig's interpolant, that is a formula $I_{\phi_{1}, S}=\operatorname{Itp}_{S}\left(\phi_{1} \mid \phi_{2}\right)$ such that:

$$
\phi_{1} \Longrightarrow I_{\phi_{1}, S} \quad I_{\phi_{1}, S} \wedge \phi_{2} \Longrightarrow \perp \quad \quad \mathcal{L}_{I_{\phi_{1}, S}} \subseteq \mathcal{L}_{\phi_{1}} \cap \mathcal{L}_{\phi_{2}}
$$

where \mathcal{L}_{ϕ} denotes the atoms of a formula ϕ. That is, $I_{\phi_{1}, S}$ is implied by ϕ_{1}, is inconsistent with ϕ_{2} and is defined over the common language of ϕ_{1} and ϕ_{2}.

For $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, we write $I_{\phi_{1} \cdots \phi_{i}, S}$ to denote $\operatorname{Itp}_{S}\left(\phi_{1} \cdots \phi_{i} \mid \phi_{i+1} \cdots \phi_{n}\right)$. W.l.o.g., we assume that, for any Itp_{S} and any formula $\phi, \operatorname{Itp}_{S}(\top \mid \phi)=\top$ and $\operatorname{Itp} p_{S}(\phi \mid \top)=\perp$, where we equate the constant true \top with the empty formula. We omit S whenever clear from the context.

An interpolation system Itp is called symmetric if for any inconsistent $\Phi=\left\{\phi_{1}, \phi_{2}\right\}: \operatorname{Itp}\left(\phi_{1} \mid \phi_{2}\right) \Longleftrightarrow \overline{\operatorname{Itp}\left(\phi_{2} \mid \phi_{1}\right)}$ (we use the notation $\bar{\phi}$ for the negation of a formula ϕ).

A sequence $\mathcal{F}=\left\{\operatorname{Itp}_{S_{1}}, \ldots\right.$, Itp $\left._{S_{n}}\right\}$ of interpolation systems is called a family.
Collectives. In the following, we formulate the properties of interpolation systems that are required by existing verification algorithms. Furthermore, we generalize the collectives by presenting them over families of interpolation systems (i.e., we allow the use different systems to generate different interpolants in a sequence). Later, we restrict the properties to the more traditional setting of the singleton families.
n-Path Interpolation (PI) was first defined in [8], where it is employed in the refinement phase of CEGAR-based predicate abstraction. It has also appeared
in [22] under the name interpolation-sequence, where it is used for a specialized interpolation-based hardware verification algorithm.

Formally, a family of $n+1$ interpolation systems $\left\{\operatorname{Itp}_{S_{0}}, \ldots\right.$, Itp $\left._{S_{n}}\right\}$ has the n-path interpolation property (n-PI) iff for any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and for $0 \leq i \leq n-1$ (recall that $I_{\top}=\top$ and $I_{\Phi}=\perp$):

$$
\left(I_{\phi_{1} \ldots \phi_{i}, S_{i}} \wedge \phi_{i+1}\right) \Longrightarrow I_{\phi_{1} \ldots \phi_{i+1}, S_{i+1}}
$$

n-Generalized Simultaneous Abstraction (GSA) is the generalization of simultaneous abstraction, a property that first appeared, under the name symmetric interpolation, in [9, where it is used for approximation of a transition relation for predicate abstraction. We changed the name to avoid confusion with the notion of symmetric interpolation system (see above). The reason for generalizing the property will be apparent later.

Formally, a family of $n+1$ interpolation systems $\left\{\operatorname{Itp}_{S_{1}}, \ldots\right.$, Itp $\left._{S_{n+1}}\right\}$ has the n-generalized simultaneous abstraction property (n-GSA) iff for any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n+1}\right\}:$

$$
\bigwedge_{i=1}^{n} I_{\phi_{i}, S_{i}} \Longrightarrow I_{\phi_{1} \ldots \phi_{n}, S_{n+1}}
$$

The case $n=2$ is called Binary $G S A(B G S A): I_{\phi_{1}, S_{1}} \wedge I_{\phi_{2}, S_{2}} \Longrightarrow I_{\phi_{1} \phi_{2}, S_{3}}$. If $\phi_{n+1}=\top$, the property is called n-simultaneous abstraction (n-SA): $\bigwedge_{i=1}^{n} I_{\phi_{i}, S_{i}} \Longrightarrow \perp\left(=I_{\phi_{1} \ldots \phi_{n}, S_{n+1}}\right)$ and, if $n=2$, binary $S A$ (BSA). In n-SA $I t p_{S_{n+1}}$ is irrelevant and is often omitted.
n-State-Transition Interpolation (STI) is defined as a combination of PI and SA in a single family of systems. It was introduced in 1] as part of the interprocedural verification algorithm Whale. Intuitively, the "state" interpolants over-approximate the set of reachable states, and the "transition" interpolants summarize the transition relations (or function bodies). The STI requirement ensures that state over-approximation is "compatible" with the summarization. That is, $\left\{I_{\phi_{1} \cdots \phi_{i}, S_{i}}\right\} I_{\phi_{i+1}, T_{i+1}}\left\{I_{\phi_{1} \cdots \phi_{i+1}, S_{i+1}}\right\}$ is a valid Hoare triple for each i.

Formally, a family of interpolation systems $\left\{\operatorname{Itp}_{S_{0}}, \ldots, \operatorname{Itp}_{S_{n}}, \operatorname{Itp}_{T_{1}}, \ldots, \operatorname{Itp}_{T_{n}}\right\}$ has the n-state-transition interpolation property (n-STI) iff for any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and for $0 \leq i \leq n-1$:

$$
\left(I_{\phi_{1} \ldots \phi_{i}, S_{i}} \wedge I_{\phi_{i+1}, T_{i+1}}\right) \Longrightarrow I_{\phi_{1} \ldots \phi_{i+1}, S_{i+1}}
$$

T-Tree Interpolation (TI) is a generalization of classical interpolation used in model checking applications, in which partitions of an unsatisfiable formula naturally correspond to a tree structure such as call tree or program unwinding. The collective was first introduced by McMillan and Rybalchenko for computing post-fixpoints of a system of Horn clauses (e.g., used in analysis of recursive programs) [15, and is equivalent to the nested-interpolants of 5].

Formally, let $T=(V, E)$ be a tree with n nodes $V=[1, \ldots, n]$. A family of n interpolation systems $\left\{\operatorname{Itp}_{S_{1}}, \ldots\right.$, Itp $\left._{S_{n}}\right\}$ has the T-tree interpolation property (T-TI) iff for any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$:

$$
\bigwedge_{(i, j) \in E} I_{F_{j}, S_{j}} \wedge \phi_{i} \Longrightarrow I_{F_{i}, S_{i}}
$$

where $F_{i}=\left\{\phi_{j} \mid i \sqsubseteq j\right\}$, and $i \sqsubseteq j$ iff node j is a descendant of node i in T. Notice that for the root i of $T, F_{i}=\Phi$ and $I_{F_{i}, S_{i}}=\perp$.

An interpolation system $I t p_{S}$ is said to have a property P (or, simply, to have P), where P is one of the properties defined above, if every family induced by $I t p_{S}$ has P. For example, $I t p_{S}$ has GSA iff for every k the family $\left\{I t p_{S_{1}}, \ldots, I t p_{S_{k}}\right\}$, where Itp $_{S_{i}}=I t p_{S}$ for all i, has k-GSA.

3 Collectives of Interpolation Systems

In this section, we study collectives of general interpolation systems, that is, we treat interpolation systems as black-boxes. In section $\S 4$ we will extend the study to the implementation-level details of the LISs.
Collectives of Single Systems. We begin by studying the relationships among the various collectives of single interpolation systems.

Theorem 1. Let Itp $_{S}$ be an interpolation system. The following are equivalent: Itp has BGSA (1), Itp ${ }_{S}$ has GSA (2), Itp has TI (3), Itp p_{S} has STI (4).

Proof. We show that $1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4,4 \rightarrow 1$.
$(1 \rightarrow 2)$ Assume $I_{t} p_{S}$ has BGSA. Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n+1}\right\}$. Then, for $2 \leq i \leq n$: $\left(I_{\phi_{1} \cdots \phi_{i-1}} \wedge I_{\phi_{i}}\right) \Rightarrow I_{\phi_{1} \cdots \phi_{i}}$, which together yield $\left(\bigwedge_{i=1}^{n} I_{\phi_{i}}\right) \Rightarrow$ $I_{\phi_{1} \ldots \phi_{n}}$. Hence, $I t p_{S}$ has GSA.
$(2 \rightarrow 3)$ Let $T=([1, \ldots, n], E)$, take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. Since $I t p_{S}$ has GSA: $\left(\bigwedge_{(i, j) \in E} I_{F_{j}} \wedge I_{\phi_{i}}\right) \Rightarrow I_{F_{i}}$, and, from the definition of Craig interpolation, $\phi_{i} \Rightarrow I_{\phi_{i}}$. Hence, Itp ${ }_{S}$ has T-TI.
$(3 \rightarrow 4)$ Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and extend it to a Φ^{\prime} by adding n copies of \top at the end. Define a tree $T_{S T I}=([1, \ldots, 2 n], E)$ s.t.: $E=\{(n+i, i) \mid 1 \leq i \leq n\} \cup\{(n+i, n+i-1) \mid 1 \leq i \leq n\}$. Then, for $1 \leq i \leq n$, $F_{i}=\left\{\phi_{i}\right\}$ and $F_{n+i}=\left\{\phi_{1}, \ldots, \phi_{i}\right\}$, where F_{i} is as in the definition of T-TI. By the T-TI property: $\left(I_{F_{n+i}} \wedge I_{F_{i+1}} \wedge \top\right) \Rightarrow I_{F_{n+i+1}}$, which is equivalent to STI.
$(4 \rightarrow 1)$ Follows from STI being syntactically equivalent to BGSA for $i=1$.
Theorem 1 has a few simple extensions. First, $G S A$ implies $S A$ directly from the definitions. Similarly, since $\phi \Rightarrow I_{\phi}$, STI implies PI. Finally, we conjecture that both SA and PI are strictly weaker than the rest. In §4 (Theorem [16), we show that for LISs, PI is strictly weaker than SA. As for SA, we show that it is equivalent to BGSA in symmetric interpolation systems (Proposition 1 in the appendix). But, in the general case, the conjecture remains open.

These results define a hierarchy of collectives which is summarized in Fig. 1 , where the edges indicate implications among the collectives. Note that $S A \rightarrow$ $G S A$ holds only for symmetric systems.

In summary, the main contribution in the setting of a single system is the proof that almost all collectives are equivalent and the hierarchy of the collectives collapses. From a practical perspective, this means that McMillan's interpolation system (implemented by most interpolating SMT-solvers) has all of the collective properties, including the recently introduced TI.

Collectives of Families of Systems. Here, we study collectives of families of interpolation systems. We first show that the collectives introduced in $\$ 2$ directly extend from families to sub-families. Second, we examine the hierarchy of the relationships among the properties. Finally, we conclude by discussing the practical implications of these results.
Collectives of Sub-families. If a family of interpolation systems \mathcal{F} has a property P, then sub-families of \mathcal{F} have P as well. We state this formally for k-STI (since we use it in the proof of Theorem (11); similar statements for the other collectives are discussed in the appendix].

Theorem 2. A family $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $_{S_{n}}$, Itp $_{T_{1}}, \ldots$, Itp $\left.p_{T_{n}}\right\}$ has n-STI iff for all $k \leq n$ the sub-family $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{k}}\right\} \cup\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left.p_{T_{k}}\right\}$ has $k-S T I$.

Relationships Among Collectives. We now show the relationships among collectives. First, we note that n-SA and BGSA are equivalent for symmetric interpolation systems. Whenever a family $\mathcal{F}=\left\{\right.$ Itp $\left._{S_{1}}, \ldots, I t p_{S_{n+1}}\right\}$ has $(n+1)$-SA and $\operatorname{Itp}_{S_{n+1}}$ is symmetric, then \mathcal{F} has n-GSA (Proposition 2 in the appendix, which is the analogue of Proposition 1 for single systems).

In the rest of the section, we delineate the hierarchy of collectives. In particular, we show that T-TI is the most general collective, immediately followed by n-GSA, which is followed by $B G S A$ and n-STI, which are equivalent, and at last by n-SA and n-PI. The first result is that the n-STI property implies both the n-PI and n-SA properties separately:

Theorem 3. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $_{S_{n}}$, Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has n-STI then (1) $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{n}}\right\}$ has $n-P I$ and (2) $\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left.p_{T_{n}}\right\}$ has $n-S A$.

A natural question to ask is whether the converse of Theorem 3 is true. That is, whether the family $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ that combines two arbitrary families \mathcal{F}_{1} and \mathcal{F}_{2} that independently enjoy n-PI and n-SA, respectively, has n-STI. We show in \$4. Theorem 11, that this is not the case.

As for BGSA, the n-STI property is closely related to it: deciding whether a family \mathcal{F} has n-STI is in fact reducible to deciding whether a collection of sub-families of \mathcal{F} has BGSA.

Theorem 4. A family $\mathcal{F}=\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $_{S_{n}}$, Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has n-STI iff $\left\{\right.$ Itp $_{S_{i}}$, Itp $_{T_{i+1}}$, Itp $\left._{S_{i+1}}\right\}$ has BGSA for all $0 \leq i \leq n-1$.

From Theorem 4 and Theorem 3 we derive:
Corollary 1. If there exists a family $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{n}}\right\} \cup\left\{\operatorname{Itp}_{T_{1}}, \ldots\right.$, Itp $\left._{T_{n}}\right\}$ s.t. $\left\{\right.$ Itp $_{S_{i}}$, Itp $_{T_{i+1}}$, Itp $\left.p_{S_{i+1}}\right\}$ has BGSA for all $0 \leq i \leq n-1$, then $\left\{\operatorname{Itp}_{T_{1}}, \ldots\right.$, Itp $\left._{T_{n}}\right\}$ has $n-S A$.

We now relate T-TI and n-GSA. Note that the need for two theorems with different statements arises from the asymmetry between the two properties: all ϕ_{i} are abstracted by interpolation in n-GSA, whereas in T-TI a formula is not abstracted, when considering the correspondent parent together with its children.

[^3]Theorem 5. Given a tree $T=(V, E)$ if a family $\mathcal{F}=\left\{\operatorname{Itp}_{S_{i}}\right\}_{i \in V}$ has T-TI, then, for every parent i_{k+1} and its children i_{1}, \ldots, i_{k} :

1. If i_{k+1} is the root, $\left\{I t p_{S_{i_{1}}}, \ldots\right.$, Itp $\left._{S_{i_{k}}}\right\}$ has $k-S A$.
2. Otherwise, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp ${S_{i_{k}}}$, Itp $\left._{S_{i_{k+1}}}\right\}$ has $k-G S A$.

Theorem 6. Given a tree $T=(V, E)$, a family $\mathcal{F}=\left\{\text { Itp }_{S_{i}}\right\}_{i \in V}$ has T-TI if, for every node i_{k+1} and its children i_{1}, \ldots, i_{k}, there exists $T_{i_{k+1}}$ such that:

1. If i_{k+1} is the root, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp $_{S_{i_{k}}}$, Itp $\left._{T_{i_{k+1}}}\right\}$ has $(k+1)-S A$.
2. Otherwise, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp $_{T_{i_{k+1}}}$, Itp $\left._{S_{i_{k+1}}}\right\}$ has $(k+1)-G S A$.

An important observation is that the T-TI property is the most general, in the sense that it realizes any of the other properties, given an appropriate choice of the tree T. We state here (and prove in the appendix) that n-GSA and n STI can be implemented by T-TI for some $T_{G S A}^{n}$ and $T_{S T I}^{n}$; the remaining cases can be derived in a similar manner. Note that the converse implications are not necessarily true in general, since the tree interpolation requirement is stronger.

Theorem 7. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{n+1}}$, Itp $_{S_{1}}, \ldots$, Itp $\left._{S_{n+1}}\right\}$ has $T_{G S A}^{n}-T I$, then $\left\{\right.$ Itp $_{S_{1}}, \ldots$, Itp $\left.p_{S_{n+1}}\right\}$ has $n-G S A$.

Theorem 8. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{n}}\right\} \cup\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has $T_{S T I^{-}}^{n}$ TI, then it has n-STI.

The results of so far (including Theorem (11] of §4) define a hierarchy of collectives which is summarized in Fig. 2, The solid edges indicate direct implication between properties; $S A \rightarrow G S A$ requires symmetry, while $G S A \rightarrow T I$ requires the existence of an additional set of interpolation systems. The dashed edges represent the ability of $T I$ to realize all the other properties for an appropriate tree; only the edges to $S T I$ and $G S A$ are shown, the other ones are implicit. The dash-dotted edges represent the sub-family properties.

An immediate application of our results is that they show how to overcome limitations of existing implementations. For example, they enable the trivial construction of tree interpolants in MathSat ${ }_{8}^{8}$ (currently only available in iZ3) - thus enabling its usability for Upgrade Checking 20 - by reusing existing BGSA-interpolation implementation of MathSat. Similarly, our results enable construction of BGSA and GSA interpolants in iZ3 (currently only available in MathSat) - thus enabling the use of iZ3 in Whale.

Figure 1: Single systems collectives. Figure 2: Families of systems collectives.

[^4]
4 Collectives of Labeled Interpolation Systems

In this section, we move from the abstract level of general interpolation systems to the implementation level of the propositional Labeled Interpolation Systems. After introducing and defining LISs, we study collectives of families, then summarize the results for single LISs, also answering the questions left open in $\$ 3$, The key results are in Lemmas $1-4$. Unfortunately, the proofs are quite technical. For readability, we focus on the main results and their significance and refer the reader to the appendix for full details.
There are several state-of-the art approaches for automatically computing interpolants. The most successful techniques derive an interpolant for $A \wedge B$ from a resolution proof of the unsatisfiability of the conjunction. Noteworthy examples are the algorithm independently developed by Pudlák [16, Huang [7] and Krajíček [10, and the one by McMillan [11. These algorithms are implemented recursively by initially computing partial interpolants for the axioms (leaves of the proof), and, then, following the proof structure, by computing a partial interpolant for each conclusion from those of the premises. The partial interpolant of the root of the proof is the interpolant for the formula. In this section, we review these algorithms following the framework of D'Silva et al. 3].
Resolution Proofs. We assume a countable set of propositional variables. A literal is a variable, either with positive (p) or negative (\bar{p}) polarity. A clause C is a finite disjunction of literals; a formula Φ in conjunctive normal form (CNF) is a finite conjunction of clauses. A resolution proof of unsatisfiability (or refutation) of a formula Φ in CNF is a tree such that the leaves are the clauses of Φ, the root is the empty clause \perp and the inner nodes are clauses generated via the resolution rule (where $C^{+} \vee p$ and $C^{-} \vee \bar{p}$ are the antecedents, $C^{+} \vee C^{-}$the resolvent, and p is the pivot):

$$
\frac{C^{+} \vee p \quad C^{-} \vee \bar{p}}{C^{+} \vee C^{-}}
$$

Labelings and Interpolant Strength. D'Silva et al. 3 generalize the algorithms by Pudlák [16] and McMillan [11] for propositional resolution systems by introducing the notion of Labeled Interpolation System (LIS), focusing on the concept of interpolant strength (a formula ϕ is stronger than ψ when $\phi \Longrightarrow \psi$).

Given a refutation of a formula $A \wedge B$, a variable p can appear as a literal only in A, only in B or in both; p is respectively said to have class A, B or $A B$. A labeling L is a mapping that assigns a label among $\{a, b, a b\}$ independently to each variable in each clause; we assume that no clause has both a literal and its negation, so assigning a label to variables or literals is equivalent. The set of possible labelings is restricted by ensuring that class A variables have label a and class B variables label $b ; A B$ variables can be labeled either a, b or $a b$.

In [3], a Labeled Interpolation System (LIS) is defined as a procedure Itp $_{L}$ (shown in Fig. 3) that, given A, B, a refutation R of $A \wedge B$ and a labeling L, outputs a partial interpolant $I_{A, L}(C)=\operatorname{Itp}_{L}(A \mid B)(C)$ for any clause C in R; this depends on the clause being in A or B (if leaf) and on the label of the pivot associated with the resolution step (if inner node). $I_{A, L}=\operatorname{Itp}_{L}(A \mid B)$ represents the interpolant for $A \wedge B$, that is $\operatorname{Itp}_{L}(A \mid B)(\perp)$. We omit the parameters whenever clear from the context.

| Leaf: $C[I]$ | Inner node: $\quad \frac{C^{+} \vee p: \alpha\left[I^{+}\right]}{C^{-} \vee \bar{p}: \beta\left[I^{-}\right]}$ |
| :--- | :---: | :---: | :---: |
| $I= \begin{cases}C \downharpoonright b & \text { if } C \in A \\ \neg(C \downharpoonright a) & \text { if } C \in B\end{cases}$ | $I= \begin{cases}I^{+} \vee I^{-} & \text {if } \alpha \sqcup \beta=a \\ I^{+} \wedge I^{-} & \text {if } \alpha \sqcup \beta=b \\ \left(I^{+} \vee p\right) \wedge\left(I^{-} \vee \bar{p}\right) & \text { if } \alpha \sqcup \beta=a b\end{cases}$ |

Figure 3: Labeled Interpolation System Itp $_{L}$.
In Fig. 3, $C \downharpoonright \alpha$ denotes the restriction of a clause C to the variables with label $\alpha . p: \alpha$ indicates that variable p has label $\alpha \in\{a, b, a b\}$. By $C[I]$ we represent that clause C has a partial interpolant $I . I^{+}, I^{-}$and I are the partial interpolants respectively associated with the two antecedents and the resolvent of a resolution step: $I^{+}=\operatorname{Itp}_{L}\left(C^{+} \vee p\right), I^{-}=\operatorname{Itp}_{L}\left(C^{-} \vee \bar{p}\right), I=I t p_{L}\left(C^{+} \vee C^{-}\right)$.

A join operator \sqcup allows to determine the label of a pivot p, taking into account that p might have different labels α and β in the two antecedents: \sqcup is defined by $a \sqcup b=a b, a \sqcup a b=a b, b \sqcup a b=a b$.

The systems corresponding to McMillan and Pudlák's interpolation algorithms are referred to as $I t p_{M}$ and $I t p_{P}$; the system dual to McMillan's is $I t p_{M^{\prime}}$. $I t p_{M}, I t p_{P}$ and $I t p_{M^{\prime}}$ are obtained as special cases of $I t p_{L}$ by labeling all the occurrences of $A B$ variables with $b, a b$ and a, respectively (see [3] and [17]).

A total order \preceq is defined over labels as $b \preceq a b \preceq a$, and pointwise extended to a partial order over labelings: $L \preceq L^{\prime}$ if, for every clause C and variable p in $C, L(p, C) \preceq L^{\prime}(p, C)$. This allows to directly compare the logical strength of the interpolants produced by two systems. In fact, for any refutation R of a formula $A \wedge B$ and labelings L, L^{\prime} such that $L \preceq L^{\prime}$, we have $\operatorname{Itp}_{L}(A, B, R) \Longrightarrow$ $\operatorname{Itp}_{L^{\prime}}(A, B, R)$ and we say that Itp_{L} is stronger than $\operatorname{Itp}_{L^{\prime}} 3$.

Since a labeled system $I t p_{L}$ is uniquely determined by the labeling L, when discussing a family of LISs $\left\{\operatorname{Itp}_{L_{1}}, \ldots, \operatorname{It} p_{L_{n}}\right\}$ we will refer to the correspondent family of labelings as $\left\{L_{1}, \ldots, L_{n}\right\}$.
Labeling Notation. In the previous sections, we saw how the various collectives involve the generation of multiple interpolants from a single inconsistent formula $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ for different subdivisions of Φ into an A and a B parts; we refer to these ways of splitting Φ as configurations. Remember that a labeling L has freedom in assigning labels only to occurrences of variables of class $A B$; each configuration identifies these variables.

Since we deal with several configurations at a time, it is useful to separate the variables into partitions of Φ depending on whether the variables are local to a ϕ_{i} or shared, taking into account all possible combinations. For example, Table 1 is the labeling table that characterizes 3-SA. Recall that in 3-SA we are given an inconsistent $\Phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ and a family of labelings $\left\{L_{1}, L_{2}, L_{3}\right\}$ and generate three interpolants $I_{\phi_{1}, L_{1}}, I_{\phi_{2}, L_{2}}, I_{\phi_{3}, L_{3}}$. The labeling L_{i} is associated with the i th configuration. For example, the table shows that L_{1} can independently assign a label from $\{a, b, a b\}$ to each occurrence of each variable shared between ϕ_{1} and ϕ_{2}, ϕ_{1} and ϕ_{3} or ϕ_{1}, ϕ_{2} and ϕ_{3} (as indicated by the presence of $\alpha_{1}, \gamma_{1}, \delta_{1}$).

When talking about an occurrence of a variable p in a certain partition $\phi_{i_{1}} \cdots \phi_{i_{k}}$, it is convenient to associate to p and the partition a labeling vector $\left(\eta_{i_{1}}, \ldots, \eta_{i_{k}}\right)$, representing the labels assigned to p by $L_{i_{1}}, \ldots, L_{i_{k}}$ in configuration i_{1}, \ldots, i_{k} (all other labels are fixed). Strength of labeling vectors is compared pointwise, extending the linear order $b \preceq a b \preceq a$ as described earlier.

We reduce the problem of deciding whether a family $\mathcal{F}=\left\{\operatorname{Itp}_{L_{1}}, \ldots, \operatorname{Itp} p_{L_{n}}\right\}$ has an interpolation property P to showing that all labeling vectors of $\left\{L_{1}, \ldots, L_{n}\right\}$

| p in ? | Variable class, label | | |
| :--- | :---: | :---: | :---: | :---: |
| | $\phi_{1} \mid \phi_{2} \phi_{3}$ | $\phi_{2} \mid \phi_{1} \phi_{3}$ | $\phi_{3} \mid \phi_{1} \phi_{2}$ |
| ϕ_{1} | A, a | B, b | B, b |
| ϕ_{2} | B, b | A, a | B, b |
| ϕ_{3} | B, b | B, b | A, a |
| $\phi_{1} \phi_{2}$ | $A B, \alpha_{1}$ | $A B, \alpha_{2}$ | B, b |
| $\phi_{2} \phi_{3}$ | B, b | $A B, \beta_{2}$ | $A B, \beta_{3}$ |
| $\phi_{1} \phi_{3}$ | $A B, \gamma_{1}$ | B, b | $A B, \gamma_{3}$ |
| $\phi_{1} \phi_{2} \phi_{3}$ | $A B, \delta_{1}$ | $A B, \delta_{2}$ | $A B, \delta_{3}$ |

Table 1: 3-SA.

| p in ? | Variable class, label | | |
| :--- | :---: | :---: | :---: | :---: |
| | $\phi_{1} \mid \phi_{2} \phi_{3}$ | $\phi_{2} \mid \phi_{1} \phi_{3}$ | $\phi_{1} \phi_{2} \mid \phi_{3}$ |
| ϕ_{1} | A, a | B, b | A, a |
| ϕ_{2} | B, b | A, a | A, a |
| ϕ_{3} | B, b | B, b | B, b |
| $\phi_{1} \phi_{2}$ | $A B, \alpha_{1}$ | $A B, \alpha_{2}$ | A, a |
| $\phi_{2} \phi_{3}$ | B, b | $A B, \beta_{2}$ | $A B, \beta_{3}$ |
| $\phi_{1} \phi_{3}$ | $A B, \gamma_{1}$ | B, b | $A B, \gamma_{3}$ |
| $\phi_{1} \phi_{2} \phi_{3}$ | $A B, \delta_{1}$ | $A B, \delta_{2}$ | $A B, \delta_{3}$ |

Table 2: BGSA.
satisfy a certain set of labeling constraints. For simplicity of presentation, in the rest of the paper we assume that all occurrences of a variable are labeled uniformly. The extension to differently labeled occurrences is straightforward.

Collectives of LISs Families. We derive in the following both necessary and sufficient conditions for the collectives to hold in the context of LISs families. The practical significance of our results is to identify which LISs satisfy which collectives. In particular, for the first time, we show that not all LISs identified by D'Silva et al. satisfy all collectives. This work provides an essential guide for using interpolant strength results when collectives are required (such as in Upgrade Checking).

We proceed as follows. First, we identify necessary and sufficient labeling constraints to characterize BGSA. Second, we extend them to n-GSA and to n-SA. Third, we exploit the connections between BGSA and n-GSA on one side, and n-STI and T-TI on the other (Theorem (4) Lemma [5 Lemma (6) to derive the labeling constraints both for n-STI and T-TI, thus completing the picture. BGSA. Let $\Phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ be an unsatisfiable formula in CNF, and $\mathcal{F}=$ $\left\{I t p_{L_{1}}, I t p_{L_{2}}, I t p_{L_{3}}\right\}$ a family of LISs. We want to identify the restrictions on the labeling vectors of $\left\{L_{1}, L_{2}, L_{3}\right\}$ for which \mathcal{F} has BGSA, i.e., $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \Longrightarrow$ $I_{\phi_{1} \phi_{2}, L_{3}}$. We define a set of BGSA constraints $C C_{B G S A}$ on labelings as follows. A family of labelings $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}$ iff:

$$
\left(\alpha_{1}, \alpha_{2}\right),\left(\delta_{1}, \delta_{2}\right) \preceq\{(a b, a b),(b, a),(a, b)\}, \beta_{2} \preceq \beta_{3}, \gamma_{1} \preceq \gamma_{3}, \delta_{1} \preceq \delta_{3}, \delta_{2} \preceq \delta_{3}
$$

hold for all variables, where $\alpha_{i}, \beta_{i}, \gamma_{i}$ and δ_{i} are as shown in Table 2 the labeling table for BGSA. $* \preceq\left\{*_{1}, *_{2}\right\}$ denotes that $* \preceq *_{1}$ or $* \preceq *_{2}$ (both can be true).

We aim to prove that $C C_{B G S A}$ is necessary and sufficient for a family of LISs to have BGSA. On one hand, we claim that, if $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}$, then $\left\{I t p_{L_{1}}, I t p_{L_{2}}, I t p_{L_{3}}\right\}$ has BGSA. It is sufficient to prove the thesis for a set of restricted BGSA constraints $C C_{B G S A}^{*}$, defined as follows:

$$
\left(\alpha_{1}, \alpha_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in\{(a b, a b),(b, a),(a, b)\}, \beta_{2}=\beta_{3}, \gamma_{1}=\gamma_{3}, \delta_{3}=\max \left\{\delta_{1}, \delta_{2}\right\}
$$

Lemma 1. If $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}^{*}$, then $\left\{\right.$ Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itpp $\left.p_{L_{3}}\right\}$ has BGSA.
The $C C_{B G S A}^{*}$ constraints can be relaxed to $C C_{B G S A}$ as shown in 17 (Theorem 2, Lemma 3), due to the connection between partial order on labelings and LISs and strength of the generated interpolants. For example, the constraint $\delta_{3}=\max \left(\delta_{1}, \delta_{2}\right)$ can be relaxed to $\delta_{3} \succeq \delta_{1}, \delta_{3} \succeq \delta_{2}$. This leads to:

Corollary 2. If $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}$, then $\left\{\right.$ Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $\left.p_{L_{3}}\right\}$ has BGSA. On the other hand, it holds that the satisfaction of the $C C_{B G S A}$ constraints is necessary for BGSA:

Lemma 2. If $\left\{\right.$ Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $\left.p_{L_{3}}\right\}$ has BGSA, then $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}$. Having proved that $C C_{B G S A}$ is both sufficient and necessary, we conclude:

Theorem 9. A family $\left\{\right.$ Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $\left._{L_{3}}\right\}$ has BGSA if and only if $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}$.
n-GSA. After addressing the binary case, we move to defining necessary and sufficient conditions for n-GSA. A family of LISs $\left\{\right.$ Itp $_{L_{1}}, \ldots$, Itp $\left._{L_{n+1}}\right\}$ has n-GSA if, for any $\Phi=\left\{\phi_{1}, \ldots, \phi_{n+1}\right\}, I_{\Phi_{1}, L_{1}} \wedge \cdots \wedge I_{\phi_{n}, L_{n}} \Longrightarrow I_{\phi_{1} \ldots \phi_{n}, L_{n+1}}$, provided Φ is inconsistent. As we defined a set of labeling constraints for BGSA, we now introduce n-GSA constraints $\left(C C_{n G S A}\right)$ on a family of labelings $\left\{L_{1}, \ldots, L_{n+1}\right\}$; for every variable with labeling vector $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k+1}}\right), 1 \leq k \leq n$, letting $m=$ i_{k+1} if $i_{k+1} \neq n+1, m=i_{k}$ otherwise:

$$
\begin{equation*}
\left(\exists j \in\left\{i_{1}, \ldots, i_{m}\right\} \alpha_{j}=a\right) \Longrightarrow\left(\forall h \in\left\{i_{1}, \ldots, i_{m}\right\} h \neq j \Longrightarrow \alpha_{h}=b\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Moreover, if } i_{k+1}=n+1: \forall j \in\left\{i_{1}, \ldots, i_{k}\right\}, \alpha_{j} \preceq \alpha_{i_{k+1}} \tag{2}
\end{equation*}
$$

That is, if a variable is not shared with ϕ_{n+1}, then, if one of the labels is a, all the others must be b; if the variable is shared with ϕ_{n+1}, condition (1) still holds for $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k-1}}\right)$, and all these labels must be stronger or equal than $\alpha_{i_{k+1}}=\alpha_{n+1}$. We can prove that these constraints are necessary and sufficient for a family of LIS to have n-GSA:

Theorem 10. A family $\mathcal{F}=\left\{\right.$ Itp $_{L_{1}}, \ldots$, Itp $\left._{L_{n+1}}\right\}$ has $n-G S A$ if and only if $\left\{L_{1}, \ldots, L_{n+1}\right\}$ satisfies $C C_{n G S A}$.
In [17] (see Setting 1) it is proved that n-SA holds for any family of LISs stronger than Pudlák. Theorem 10 is strictly more general, since it allows for tuples of labels (e.g., $\left(\alpha_{1}, \alpha_{2}\right)=(a, b)$ or $\left.\left(\delta_{1}, \delta_{3}, \delta_{2}\right)=(a, b, b)\right)$ that were not considered in [17]. The constraints for n-SA follow as a special case of $C C_{n G S A}$:
Corollary 3. A family $\mathcal{F}=\left\{\right.$ Itp $_{L_{1}}, \ldots$, Itp $\left._{L_{n}}\right\}$ has $n-S A$ if and only if $\left\{L_{1}, \ldots, L_{n}\right\}$ satisfies the following constraints: for every variable with labeling vector $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right)$, for $2 \leq k \leq n:\left(\exists j \in\left\{i_{1}, \ldots, i_{k}\right\} \alpha_{j}=a\right) \Longrightarrow\left(\forall h \in\left\{i_{1}, \ldots, i_{k}\right\} h \neq j \Longrightarrow \alpha_{h}=b\right)$.
Moreover, a family that has $(n+1)$-SA also has n-GSA if the last member of the family is Pudlák's system. In fact, from Proposition 2 and Pudlák's system being symmetric (as shown in [7]), it follows that if a family $\left\{\right.$ Itp $_{L_{1}}, \ldots$, Itp $_{L_{n}}$, Itp $\left._{P}\right\}$ has $(n+1)-S A$, then it has $n-G S A$.

After investigating n-GSA and n-SA, we address two questions which were left open in $\S 3$ do n-SA and n-PI imply n-STI? Is the requirement of additional interpolation systems necessary to obtain T-TI from n-GSA? We show here that n-SA and n-PI do not necessarily imply n-STI, and that, for LISs, n-GSA and T-TI are equivalent.
n-STI. Theorem 3 shows that if a family has n-STI, then it has both n-SA and n-PI. We prove that the converse is not necessarily true. First, it is not difficult
to show that any family $\left\{\operatorname{Itp}_{L_{0}}, \operatorname{Itp}_{L_{1}}, I t p_{L_{2}}\right\}$ has 2-PI (Proposition 3 in the appendix); a second result is that:
Lemma 5. There exists a family $\left\{\right.$ Itp $_{L_{0}}$, Itp $_{L_{1}}$, Itp $\left._{L_{2}}\right\}$ that has 2-PI and a family $\left\{\right.$ Itp $_{L_{1}^{\prime}}$, Itp $\left.p_{L_{2}^{\prime}}\right\}$ that has 2-SA, but the family $\left\{\right.$ Itp $_{L_{0}}$, Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $_{L_{1}^{\prime}}$, Itp $\left._{L_{2}^{\prime}}\right\}$ does not have 2-STI.

We obtain the main result applying the STI sub-family property (Theorem 2):
Theorem 11. There exists a family $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left.p_{S_{n}}\right\}$ that has $n-P I$, and a family $\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ that has $n-S A$, but the family $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left.p_{S_{n}}\right\} \cup$ $\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left.p_{T_{n}}\right\}$ does not have n-STI.

T-TI. The last collective to be studied is T-TI. Theorem 6 shows how T-TI can be obtained by multiple applications of GSA at the level of each parent and its children, provided that we can find an appropriate labeling to generate an interpolant for the parent. We prove here that, in the case of LISs, this requirement is not needed, and derive explicit constraints on labelings for T-TI.

Let us define n-GSA strengthening any property derived from n-GSA by not abstracting any of the subformulae ϕ_{i}, for example $I_{\phi_{1}, L_{1}} \wedge \ldots \wedge I_{\phi_{n-1}, L_{n-1}} \wedge$ $\phi_{n} \Longrightarrow I_{\phi_{1} \ldots \phi_{n}, L_{n+1}}$; it can be proved that:
Lemma 6. The set of labeling constraints of any $n-G S A$ strengthening is a subset of constraints of $n-G S A$.

From Theorem 6 and Lemma 6, it follows that:
Lemma 7. Given a tree $T=(V, E)$ a family $\left\{\text { Itp }_{S_{i}}\right\}_{i \in V}$ has T-TI if, for every parent i_{k+1} and its children i_{1}, \ldots, i_{k}, the family of labelings of the $(k+1)-G S A$ strengthening obtained by non abstracting the parent satisfies the correspondent subset of $(k+1)$-GSA constraints.

Note that, in contrast to Theorem 6] in the case of LISs we do not need to ensure the existence of an additional set of interpolation systems to abstract the parents. The symmetry between the necessary and sufficient conditions given by Theorem 6 and Theorem 5 is restored, and we establish:
Theorem 12. Given a tree $T=(V, E)$ a family $\left\{\text { Itp }_{S_{i}}\right\}_{i \in V}$ has T-TI if and only if for every parent i_{k+1} and its children i_{1}, \ldots, i_{k}, the family of labelings of the $(k+1)-G S A$ strengthening obtained by non abstracting the parent satisfies the correspondent subset of $(k+1)$-GSA constraints.

Alternatively, in the case of LISs, the additional interpolation systems can be constructed explicitly:

Theorem 13. Any $\mathcal{F}=\left\{\operatorname{Itp}_{L_{i_{1}}}, \ldots\right.$, Itp $_{L_{i_{k}}}$, Itp $\left._{L_{n+1}}\right\}$ s.t. $k<n$ that has an $n-G S A$ strengthening property can be extended to a family that has n-GSA.

Collectives of Single LISs. In the following, we highlight the fundamental results in the context of single LISs, which represent the most common application of the framework of D'Silva et al. to SAT-based model checking.

First, importantly for practical applications, any LIS satisfies PI:

Theorem 14. PI holds for all single LISs.
Second, recall that in $\S 3$ we proved that BGSA, STI, TI, GSA are equivalent for single interpolation systems, and that SA \rightarrow BGSA for symmetric ones. We now show that for a single LIS, SA is equivalent to BGSA and that PI is not.
Theorem 15. If a LIS has SA, then it has BGSA.
Proof. We show that, for any L, the labeling constraints of SA imply those of BGSA. Refer to Table 2, Table 1, Theorem 10 and Corollary 3, In case of a family $\left\{L_{1}, L_{2}, L_{3}\right\}$, the constraints for 3-SA are:

$$
\begin{aligned}
& \left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{2}, \beta_{3}\right),\left(\gamma_{1}, \gamma_{3}\right) \preceq\{(a b, a b),(b, a),(a, b)\} \\
& \left(\delta_{1}, \delta_{2}, \delta_{3}\right) \preceq\{(a b, a b, a b),(a, b, b),(b, a, b),(b, b, a)\}
\end{aligned}
$$

When $L_{1}=L_{2}=L_{3}$, they simplify to $\alpha, \beta, \gamma, \delta \in\{a b, b\}$; this means that, in case of a single LIS, only Pudlák's or stronger systems are allowed. In case of a family $\left\{L_{1}, L_{2}, L_{3}\right\}$, the constraints for BGSA are:

$$
\left(\alpha_{1}, \alpha_{2}\right),\left(\delta_{1}, \delta_{2}\right) \preceq\{(a b, a b),(b, a),(a, b)\}, \beta_{2} \preceq \beta_{3}, \gamma_{1} \preceq \gamma_{3}, \delta_{1} \preceq \delta_{3}, \delta_{2} \preceq \delta_{3}
$$

When $L_{1}=L_{2}=L_{3}$, they simplify to $\alpha, \delta \in\{a b, b\}$; clearly, the constraints for 3 -SA imply those for BGSA, but not vice versa.

Finally, Theorem 14 and Theorem 15 yield:
Theorem 16. The system Itp $_{M^{\prime}}$ has PI but does not have BGSA.
Proof. From the proof of Theorem [15, a LIS has the BGSA property iff it is stronger or equal than Pudlák's system. Itp $_{M^{\prime}}$ is strictly weaker than Itp_{P}. Thus, it does not have BGSA.

Note that the necessary and sufficient conditions for LISs to support each of the collectives simplify implementing procedures with a given property, or, more importantly from a practical perspective, determine which implementation supports which property.

5 Implementation

We developed an interpolating prover, PeRIPLQ 9 , which implements the proposed framework. PeRIPLO is, to the best of our knowledge, the first SATsolver built on MiniSAT 2.2.0 that realizes the Labeled Interpolation Systems of [3] and allows to perform interpolation, path interpolation, generalized simultaneous abstraction, state-transition interpolation and tree interpolation; it also offers proof logging and manipulation routines. The tool has been integrated within the FunFrog and eVolCheck verification frameworks, which make use of its solving and interpolation features for SAT-based model checking. In theory, using different partitions of the same formula and different labelings with each partition does not change the algorithmic complexity of LISs (see appendix C). In our experience, there is no overhead in practice as well.
${ }^{9}$ PeRIPLO is available at http://verify.inf.usi.ch/periplo.html

6 Conclusions

Craig interpolation is a widely used approach in abstraction-based model checking. This paper conducts a systematic investigation of the most common interpolation properties exploited in verification, focusing on the constraints they pose on propositional interpolation systems used in SAT-based model checking.

The paper makes the following contributions. It systematizes and unifies various properties imposed on interpolation by existing verification approaches and proves that for families of interpolation systems the properties form a hierarchy, whereas for a single system all properties except path interpolation and simultaneous abstraction are in fact equivalent. Additionally, it defines and proves both sufficient and necessary conditions for a family of Labeled Interpolation Systems. In particular, it demonstrates that in case of a single system path interpolation is common to all LISs, while simultaneous abstraction is as strong as all other more complex properties. Extending our framework to address interpolation in first order theories is an interesting open problem, and is part of our future work.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An Interpolation-Based Algorithm for Inter-procedural Verification. In VMCAI'12, pages 39-55.
2. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI'11.
3. V. D'Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant Strength. In VMCAI'10, pages 129-145.
4. N. Een, A. Mishchenko, and R. Brayton. Efficient Implementation of PropertyDirected Reachability. In FMCAD'11.
5. M. Heizmann, J. Hoenicke, and A. Podelski. Nested Interpolants. In POPL'10.
6. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from Proofs. In POPL'04, pages 232-244.
7. G. Huang. Constructing Craig Interpolation Formulas. In COCOON'95.
8. R. Jhala and K. McMillan. A Practical and Complete Approach to Predicate Refinement. In TACAS'06, pages 459-473.
9. R. Jhala and K. McMillan. Interpolant-Based Transition Relation Approximation. In $C A V^{\prime} 05$, pages 39-51.
10. J. Krajícek. Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic. J. Symb. Log., 62(2):457-486, 1997.
11. K. McMillan. An Interpolating Theorem Prover. In TACAS'04, pages 16-30.
12. K. McMillan. Applications of Craig Interpolation to Model Checking. In CSL'04.
13. K. McMillan. Interpolation and SAT-Based Model Checking. In CAV'03.
14. K. McMillan. Lazy Abstraction with Interpolants. In $C A V^{\prime} 06$, pages 123-136.
15. K. McMillan and A. Rybalchenko. Solving Constrained Horn Clauses Using Interpolation. Technical Report MSR-TR-2013-6, Microsoft Research, 2013.
16. P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations. J. Symb. Log., 62(3):981-998, 1997.
17. S. Rollini, O. Sery, and N. Sharygina. Leveraging Interpolant Strength in Model Checking. In CAV'12.
18. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Interpolation. In VMCAI'07, pages 346-362.
19. O. Sery, G. Fedyukovich, and N. Sharygina. FunFrog: Bounded Model Checking with Interpolation-based Function Summarization. In ATVA'12.
20. O. Sery, G. Fedyukovich, and N. Sharygina. Incremental Upgrade Checking by Means of Interpolation-based Function Summaries. In FMCAD'12.
21. R. Sharma, A. V. Nori, and A. Aiken. Interpolants as Classifiers. In CAV'12.
22. Y. Vizel and O. Grumberg. Interpolation-Sequence Based Model Checking. In FMCAD'09, pages 1-8.

A Properties of Sub-families

Theorem 2. A family $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $_{S_{n}}$, Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has n-STI iff for all $k \leq n$ the subfamily $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{k}}\right\} \cup\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left.p_{T_{k}}\right\}$ has k-STI.

Proof. \rightarrow) Assume an inconsistent $\Phi \triangleq\left\{\phi_{1}, \ldots, \phi_{k}\right\}$. We can extend it to a $\Phi^{\prime} \triangleq\left\{\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime}\right\}$ such that $\phi_{i}^{\prime} \equiv \phi_{i}$, by adding $n-k$ empty formulae T. If \mathcal{F} has the n-STI property, for $0 \leq j \leq k-1$

$$
I_{\phi_{1} \ldots \phi_{j}, S_{j}} \wedge I_{\phi_{j+1}, T_{j+1}} \rightarrow I_{\phi_{1} \ldots \phi_{j+1}, S_{j+1}}
$$

$\leftarrow)$ Follows from $k=n$.
Theorem 17. A family $\mathcal{F}=\left\{\right.$ Itp $_{S_{1}}, \ldots$, Itp $\left._{S_{n+1}}\right\}$ has $n-G S A$ iff for all $k \leq n$ all the subfamilies $\left\{I t p_{S_{i_{1}}}, \ldots\right.$, Itp ${S_{i_{k+1}}}\}$ have $k-G S A$.

Proof. (\rightarrow) Let n be a natural number. Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{k+1}\right\}$ such that $k \leq n$. Let $\left\{i_{1}, \ldots, i_{k+1}\right\}$ be a subset of $\{1, \ldots, n+1\}$. Extend Φ to a $\Phi^{\prime}=\left\{\phi_{1}^{\prime}, \ldots, \phi_{n+1}^{\prime}\right\}$ by adding $(n-k)$ copies of \top, so that $\phi_{i_{1}}^{\prime}=\phi_{1}, \ldots, \phi_{i_{k}}^{\prime}=\phi_{k}$, $\phi_{i_{k+1}}^{\prime}=\phi_{n+1}$. Since \mathcal{F} has n-GSA:

$$
\bigwedge_{j=1}^{n} I_{\phi_{j}^{\prime}, S_{j}} \Longrightarrow I_{\phi_{1}^{\prime} \ldots \phi_{n}^{\prime}, S_{n+1}}
$$

and, since $\phi_{j}^{\prime}=\top$ for $j \notin\left\{i_{1}, \ldots, i_{k}\right\}$:

$$
\bigwedge_{j \in\left\{i_{1} \ldots i_{k}\right\}} I_{\phi_{j}, S_{j}} \Longrightarrow I_{\phi_{i_{1} \ldots i_{k}}, S_{i_{k+1}}}
$$

(\leftarrow) Follows from $k=n$.
It is easy to see that the technique used in the proof of Theorem 17 i.e., extending an unsatisfiable formula with \top conjuncts, applies to the other properties as well.

Theorem 18. A family $\left\{\operatorname{Itp}_{S_{1}}, \ldots\right.$, It $\left._{S_{n}}\right\}$ has n-SA iff for all $k \leq n$ all the subfamilies $\left\{\right.$ Itp $_{S_{i_{1}}}, \ldots$, Itp $\left._{S_{i_{k}}}\right\}$ have $k-S A$.

Proof. The proof works as in Theorem 17
Theorem 19. A family $\left\{\operatorname{Itp}_{S_{0}}, \ldots\right.$, It $\left._{S_{n}}\right\}$ has n-PI iff for all $k \leq n$ the subfamily $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{k}}\right\}$ has $k-P I$.

Proof. The proof works as in Theorem 2.
Theorem 20. For a given tree $T=(V, E)$, a family $\left\{\text { Itp }_{S_{i}}\right\}_{i \in V}$ has T-TI iff for every subtree $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of T, the family $\left\{\text { Itp }_{S_{j}}\right\}_{j \in V^{\prime}}$ has $T^{\prime}-T I$.

Proof. \rightarrow). Assume an inconsistent $\Phi \triangleq\left\{\phi_{i_{1}}, \ldots, \phi_{i_{k}}\right\}$ decorating T^{\prime}. We can extend Φ with $\left|V^{\prime}\right|-|V|$ empty formulae \top to $\Phi^{\prime} \triangleq\left\{\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime}\right\}$ decorating T. If $\left\{\text { Itp }_{S_{i}}\right\}_{v_{i} \in V}$ has the T-TI property, for all v_{i}^{\prime} in V and in particular for all v_{i} in V^{\prime}

$$
\bigwedge_{\left(v_{i}, v_{j}\right) \in E^{\prime}} I_{F_{j}, S_{j}} \wedge \phi_{i} \rightarrow I_{F_{i}, S_{i}}
$$

$\leftarrow)$. Follows from $T^{\prime} \equiv T$.

B Other Proofs

Proposition 1. $S A$ implies $B G S A$ in symmetric interpolation systems.
Proof. Take any inconsistent $\Phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$. If an interpolation system has SA, then:

$$
I_{\phi_{1}} \wedge I_{\phi_{2}} \wedge I_{\phi_{3}} \Longrightarrow \perp
$$

Equivalently,

$$
I_{\phi_{1}} \wedge I_{\phi_{2}} \Longrightarrow \overline{I_{\phi_{3}}}
$$

For a symmetric system, $\overline{I_{\phi_{3}}}=I_{\phi_{1} \phi_{2}}$.
Proposition 2. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{1}}, \ldots$, Itp $\left._{S_{n+1}}\right\}$ has $(n+1)-S A$ and Itp $_{S_{n+1}}$ is symmetric, then \mathcal{F} has $n-G S A$.

Proof. Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. Since \mathcal{F} has $(n+1)$-SA, then $I_{\phi_{1}, S_{1}} \wedge \cdots \wedge I_{\phi_{n+1}, S_{n+1}} \Longrightarrow \perp$. Assuming Itp $_{S_{n+1}}$ is symmetric, $\overline{I_{\phi_{n+1}, S_{n+1}}}=$ $I_{\phi_{1}, \ldots, \phi_{n}, S_{n+1}}$ and the thesis is proved.

Theorem 3. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $_{S_{n}}$, Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has n-STI then (1) $\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left.p_{S_{n}}\right\}$ has $n-P I$ and (2) $\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left.p_{T_{n}}\right\}$ has $n-S A$.

Proof. (1) It follows from $\phi_{i} \Longrightarrow I_{\phi_{i}, S_{i}}$ for every i.
(2). Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. If \mathcal{F} has n-STI, then, for $0 \leq i \leq$ $n-1$:

$$
I_{\phi_{1} \cdots \phi_{i}, S_{i}} \wedge I_{\phi_{i+1}, T_{i+1}} \Longrightarrow I_{\phi_{1} \cdots \phi_{i+1}, S_{i+1}}
$$

Since $I_{\phi_{1} \cdots \phi_{n}}=\perp$, we get $I_{\phi_{1}, T_{1}} \wedge \cdots \wedge I_{\phi_{n}, T_{n}} \Longrightarrow \perp$.
Theorem 4. A family $\mathcal{F}=\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $_{S_{n}}$, Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has n-STI iff $\left\{\right.$ Itp $_{S_{i}}$, Itp $_{T_{i+1}}$, Itp $\left._{S_{i+1}}\right\}$ has BGSA for all $0 \leq i \leq n-1$.

Proof. (\rightarrow). Take any inconsistent $\Phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$. For $0 \leq i \leq n-1$, extend Φ to a $\Phi^{\prime}=\left\{\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime}\right\}$ by adding $(n-3)$ copies of T, so that $\phi_{i}^{\prime}=\phi_{1}, \phi_{i+1}^{\prime}=\phi_{2}$, $\phi_{i+2}^{\prime}=\phi_{3}$. Since \mathcal{F} has n-STI:

$$
I_{\phi_{1}^{\prime} \cdots \phi_{i}^{\prime}, S_{i}} \wedge I_{\phi_{i+1}^{\prime}, T_{i+1}} \Longrightarrow I_{\phi_{1}^{\prime} \cdots \phi_{i+1}^{\prime}, S_{i+1}}
$$

Hence, by construction:

$$
I_{\phi_{1}, S_{i}} \wedge I_{\phi_{2}, T_{i+1}} \Longrightarrow I_{\phi_{1} \phi_{2}, S_{i+1}}
$$

(\leftarrow) Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. Since $\left\{\operatorname{Itp}_{S_{i}}\right.$, Itp $_{T_{i+1}}$, Itp $\left._{S_{i+1}}\right\}$ has BGSA, it follows that for $\left\{\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right\}$, where $\phi_{1}^{\prime}=\phi_{1} \wedge \cdots \wedge \phi_{i}, \phi_{2}^{\prime}=\phi_{i+1}$, $\phi_{3}^{\prime}=\phi_{i+2} \wedge \cdots \wedge \phi_{n}$:

$$
I_{\phi_{1}^{\prime}, S_{i}} \wedge I_{\phi_{2}^{\prime}, T_{i+1}} \Longrightarrow I_{\phi_{1}^{\prime} \phi_{2}^{\prime}, S_{i+1}}
$$

Hence, by construction:

$$
I_{\phi_{1} \ldots \phi_{i}, S_{i}} \wedge I_{\phi_{i+1}, T_{i+1}} \Longrightarrow I_{\phi_{1} \ldots \phi_{i+1}, S_{i+1}}
$$

Theorem 5. Given a tree $T=(V, E)$ if a family $\mathcal{F}=\left\{\text { Itp }_{S_{i}}\right\}_{i \in V}$ has T-TI, then, for every parent i_{k+1} and its children i_{1}, \ldots, i_{k} :

1. If i_{k+1} is the root, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp $\left._{S_{i_{k}}}\right\}$ has $k-S A$.
2. Otherwise, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots, I t p_{S_{i_{k}}}, I t p_{S_{i_{k+1}}}\right\}$ has $k-G S A$.

Proof. Take any inconsistent $\Phi=\left\{\phi_{i_{1}}, \ldots, \phi_{i_{k+1}}\right\}$. Consider a parent i_{k+1} and its children i_{1}, \ldots, i_{k}. If i_{k+1} is not the root, extend Φ to a Φ^{\prime} in such a way that: the children are decorated with $\phi_{i_{1}}, \ldots, \phi_{i_{k}}$, all their descendants and i_{k+1} with \top, all the nodes external to the subtree rooted in i_{k+1} with ϕ_{n+1}. Since \mathcal{F} has T-TI, then at node i_{k+1} :

$$
\bigwedge_{\left(i_{k+1}, j\right) \in E} I_{F_{j}, S_{j}} \wedge \phi_{i_{k+1}} \Longrightarrow I_{F_{i_{k+1}}, S_{i_{k+1}}}
$$

that is:

$$
\bigwedge_{i \in\left\{i_{1} \ldots i_{k}\right\}} I_{\phi_{i}, S_{i}} \wedge T \Longrightarrow I_{\phi_{i_{1}} \cdots \phi_{i_{k}}, S_{k+1}}
$$

If i_{k+1} is the root, the proof simply ignores the presence of $\phi_{i_{k+1}}$ and $S_{i_{k+1}}$.
Theorem 6. Given a tree $T=(V, E)$, a family $\mathcal{F}=\left\{\text { Itp }_{S_{i}}\right\}_{i \in V}$ has T-TI if, for every node i_{k+1} and its children i_{1}, \ldots, i_{k}, there exists $T_{i_{k+1}}$ such that:

1. If i_{k+1} is the root, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp $\left._{S_{i_{k}}}, \operatorname{Itp}_{T_{i_{k+1}}}\right\}$ has $(k+1)-S A$.
2. Otherwise, $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp $_{T_{i_{k+1}}}$, Itp $\left._{S_{i_{k+1}}}\right\}$ has $(k+1)-G S A$.

Proof. Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. Consider a parent i_{k+1} different from the root and its children i_{1}, \ldots, i_{k}.
If $\left\{\operatorname{Itp}_{S_{i_{1}}}, \ldots\right.$, Itp $_{T_{i_{k+1}}}$, Itp $\left._{S_{i_{k+1}}}\right\}$ has k-GSA, for $\left\{F_{i_{1}}, \ldots, F_{i_{k}}, \phi_{i_{k+1}}, \Phi \backslash\left(\bigcup F_{i_{j}} \cup\right.\right.$ $\left.\left.\left\{\phi_{i_{k+1}}\right\}\right)\right\}$:

$$
\bigwedge_{i \in\left\{i_{1} \ldots i_{k}\right\}} I_{F_{i}, S_{i}} \wedge I_{\phi_{i_{k+1}}, T_{i_{k+1}}} \Longrightarrow I_{F_{i_{k+1}}, S_{i_{k+1}}}
$$

The thesis follows since $\phi_{i_{k+1}} \Longrightarrow I_{\phi_{i_{k+1}}, T_{i_{k+1}}}$. If i_{k+1} is the root, $I_{F_{i_{k+1}}, S_{i_{k+1}}}=$ \perp and $S_{i_{k+1}}$ is superfluous.

Figure 4: $T_{G S A}^{n}$.

Figure 5: $T_{S T I}^{n}$.

Theorem 7. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{n+1}}$, Itp $_{S_{1}}, \ldots$, Itp $\left._{S_{n+1}}\right\}$ has $T_{G S A}^{n}$-TI, then $\left\{\right.$ Itp $_{S_{1}}, \ldots$, Itp $\left._{S_{n+1}}\right\}$ has n-GSA.

Proof. Let $T_{G S A}^{n}=(V, E)$ be the tree shown in Fig. (4, where $V=\{0, \ldots, n+1\}$ and $E=\{(0, i) \mid 1 \leq i \leq n\} \cup\{(n+1,0)\}$.

Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n+1}\right\}$. We decorate node 0 with \top, all other nodes i with ϕ_{i}, for $1 \leq i \leq n+1$. Since \mathcal{F} has T-TI, then at node 0 :

$$
\bigwedge_{(0, j) \in E} I_{F_{j}, S_{j}} \wedge \top \Longrightarrow I_{F_{0}, S_{n+1}}
$$

Hence, by construction:

$$
\bigwedge_{i=1}^{n} I_{\phi_{i}, S_{i}} \Longrightarrow I_{\phi_{1} \ldots \phi_{n}, S_{n+1}}
$$

Theorem 8. If a family $\mathcal{F}=\left\{\right.$ Itp $_{S_{0}}, \ldots$, Itp $\left._{S_{n}}\right\} \cup\left\{\right.$ Itp $_{T_{1}}, \ldots$, Itp $\left._{T_{n}}\right\}$ has $T_{S T I^{-}}^{n}$ TI, then it has $n-S T I$.

Proof. Let $T_{S T I}^{n}=(V, E)$ be the tree shown in Fig. 5. where $V=\{1, \ldots, 2 n\}$ and $E=\{(n+i, i) \mid 1 \leq i \leq n\} \cup\{(n+i, n+i-1) \mid 1 \leq i \leq n\}$.

Take any inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$. For $1 \leq i \leq n$, we decorate i with $\phi_{i}, n+i$ with \top; similarly we associate i with $\operatorname{Itp}_{T_{i}}$ and $n+i$ with $I t p_{S_{i}}$. Since \mathcal{F} has T-TI, then at every node $n+i+1$, for $0 \leq i \leq n-1$:

$$
\left(I_{F_{n+i}, S_{i}} \wedge I_{F_{i+1}, T_{i+1}}\right) \wedge \top \Longrightarrow I_{F_{n+i+1}, S_{i+1}}
$$

Hence, by construction,

$$
I_{\phi_{1} \ldots \phi_{i}, S_{i}} \wedge I_{\phi_{i+1}, T_{i+1}} \Longrightarrow I_{\phi_{1} \ldots \phi_{i+1}, S_{i+1}}
$$

Lemma 1. If $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}^{*}$, then $\left\{\right.$ Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $\left._{L_{3}}\right\}$ has BGSA.
Proof (by structural induction). We remind here the restricted BGSA constraints $C C_{B G S A}^{*}$:

$$
\left(\alpha_{1}, \alpha_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in\{(a b, a b),(b, a),(a, b)\}, \beta_{2}=\beta_{3}, \gamma_{1}=\gamma_{3}, \delta_{3}=\max \left\{\delta_{1}, \delta_{2}\right\}
$$

The reader can verify that the conditions on the δ_{i} are equivalent to $\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \in$ $\{(a b, a b, a b),(b, a, a),(a, b, a)\}$.

We show that, given a refutation of Φ, for any clause C in the refutation the partial interpolants satisfy $I_{\phi_{1}, L_{1}}(C) \wedge I_{\phi_{2}, L_{2}}(C) \Longrightarrow I_{\phi_{1} \phi_{2}, L_{3}}(C)$, that is $I_{\phi_{1}, L_{1}}(C) \wedge I_{\phi_{2}, L_{2}}(C) \wedge \overline{I_{\phi_{1} \phi_{2}, L_{3}}(C)} \Longrightarrow \perp$.

For simplicity, we write I_{1}, I_{2}, I_{3} to refer to the three partial interpolants for C and, if C has antecedents, we denote their partial interpolants with I_{1}^{+}, I_{2}^{+}, I_{3}^{+}and $I_{1}^{-}, I_{2}^{-}, I_{3}^{-}$.
Base case (leaf). Case splitting on C (refer to Table 2):

$C \in \phi_{1}$	$I_{1}=C \downarrow_{1, b}$	$I_{2}=\overline{C l_{2, a}}$	$\overline{I_{3}}=\overline{C l_{3, b}}$
$C \in \phi_{2}$	$I_{1}=\overline{C L_{1, a}}$	$I_{2}=\left.C\right\|_{2, b}$	$\overline{I_{3}}=\overline{C L_{3},}$
$C \in \phi_{3}$	$I_{1}=\overline{C \downarrow_{1, a}}$	$I_{2}=\overline{\left.C\right\|_{2, a}}$	$\overline{I_{3}}=C \downarrow_{3}$

The goal is to show that in each case $I_{1} \wedge I_{2} \wedge \overline{I_{3}} \Longrightarrow \perp$. Representing C by grouping variables into the different partitions, with overbraces to show the label assigned to each variable, we have:
$C \in \phi_{1}:$

$$
\overline{\left.C\right|_{3, b}}=\overbrace{\overline{C_{\phi_{1}} L_{b}}}^{a} \wedge \overbrace{C_{\phi_{1} \phi_{2} L_{b}}}^{a} \wedge \overbrace{\overline{C_{\phi_{1} \phi_{3}} L_{b}}}^{\gamma_{3}} \wedge \overbrace{\bar{C}_{\phi_{1} \phi_{2} \phi_{3} L_{b}}^{\gamma_{3}}}^{\delta_{3}}
$$

$C \in \phi_{2}:$

$$
\overline{C L_{3, b}}=\overbrace{C_{\phi_{2} L_{b}}}^{a} \wedge \overbrace{\bar{C}_{\phi_{1} \phi_{2} L_{b}}}^{a} \wedge \overbrace{C_{\phi_{2} \phi_{3} \iota_{b}}^{\beta_{3}}}^{\beta_{3}} \overbrace{\bar{C}_{\phi_{1} \phi_{2} \phi_{3} L_{b}}^{\delta_{3}}}^{\delta_{3}}
$$

$C \in \phi_{3}:$

$\left.C\right|_{3, a}=\overbrace{C_{\phi_{3}} L_{a}}^{b} \vee \overbrace{C_{\phi_{2} \phi_{3} L_{a}}^{\beta_{3}}}^{\beta_{3}} \vee \overbrace{C_{\phi_{1} \phi_{3} L_{a}}^{\gamma_{3}}}^{\gamma_{3}} \vee \overbrace{C_{\phi_{1} \phi_{2} \phi_{3} l_{a}}^{\delta_{3}}}$

We can carry out some simplifications, due to the equality constraints in $C C_{B G S A}^{*}$ and the fact that variables with label a restricted w.r.t. b (and vice versa) are removed, leading (with the help of the resolution rule) to the constraints:

Finally, the constraints on $\left(\alpha_{1}, \alpha_{2}\right)$ and ($\delta_{1}, \delta_{2}, \delta_{3}$) guarantee that the remaining variables are simplified away, proving the base case.
Inductive step (inner node). The inductive hypothesis (i.h.) consists of $I_{1}^{+} \wedge$ $I_{2}^{+} \wedge I_{3}^{+} \Longrightarrow \perp, I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}} \Longrightarrow \perp$. We do a case splitting on the pivot p : Case $1\left(p\right.$ in $\left.\phi_{1}\right)$.

$$
\begin{aligned}
I_{1} \wedge I_{2} \wedge \overline{I_{3}} & \Longleftrightarrow \\
\left(I_{1}^{+} \vee I_{1}^{-}\right) \wedge\left(I_{2}^{+} \wedge I_{2}^{-}\right) \wedge \overline{\left(I_{3}^{+} \vee I_{3}^{-}\right)} & \Longleftrightarrow \\
\left(I_{1}^{+} \vee I_{1}^{-}\right) \wedge I_{2}^{+} \wedge I_{2}^{-} \wedge \overline{I_{3}^{+}} \wedge \overline{I_{3}^{-}} & \Longleftrightarrow \\
\left(I_{1}^{+} \wedge I_{2}^{+} \wedge \overline{I_{3}^{+}}\right) \vee\left(I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}}\right) & \Longleftrightarrow \text { i.h. } \perp
\end{aligned}
$$

Case $2\left(p\right.$ in $\left.\phi_{2}\right)$.

$$
\begin{aligned}
I_{1} \wedge I_{2} \wedge \overline{I_{3}} & \Longleftrightarrow \\
\left(I_{1}^{+} \wedge I_{1}^{-}\right) \wedge\left(I_{2}^{+} \vee I_{2}^{-}\right) \wedge \overline{\left(I_{3}^{+} \vee I_{3}^{-}\right)} & \Longleftrightarrow \\
I_{1}^{+} \wedge I_{1}^{-} \wedge\left(I_{2}^{+} \vee I_{2}^{-}\right) \wedge \overline{I_{3}^{+}} \wedge \overline{I_{3}^{-}} & \Longleftrightarrow \\
\left(I_{1}^{+} \wedge I_{2}^{+} \wedge \overline{I_{3}^{+}}\right) \vee\left(I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}}\right) & \Longleftrightarrow{ }^{\text {i.h. }} \perp
\end{aligned}
$$

Case $3\left(p\right.$ in $\left.\phi_{3}\right)$.

$$
\begin{aligned}
I_{1} \wedge I_{2} \wedge \overline{I_{3}} & \Longleftrightarrow \\
\left(I_{1}^{+} \wedge I_{1}^{-}\right) \wedge\left(I_{2}^{+} \wedge I_{2}^{-}\right) \wedge \overline{\left(I_{3}^{+} \wedge I_{3}^{-}\right)} & \Longleftrightarrow \\
I_{1}^{+} \wedge I_{1}^{-} \wedge I_{2}^{+} \wedge I_{2}^{-} \wedge\left(\overline{I_{3}^{+}} \vee \overline{I_{3}^{-}}\right) & \Longleftrightarrow \\
\left(I_{1}^{+} \wedge I_{2}^{+} \wedge \overline{I_{3}^{+}}\right) \vee\left(I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}}\right) & \Longleftrightarrow \text { i.h. } \perp
\end{aligned}
$$

Case $4\left(p\right.$ in $\left.\phi_{1} \phi_{2}\right)$. If $\left(\alpha_{1}, \alpha_{2}\right)=(a b, a b)$:

$$
\begin{aligned}
I_{1} \wedge I_{2} \wedge \overline{I_{3}} & \Longleftrightarrow \\
\left(I_{1}^{+} \vee p\right) \wedge\left(I_{1}^{-} \vee \bar{p}\right) \wedge\left(I_{2}^{+} \vee p\right) \wedge\left(I_{2}^{-} \vee \bar{p}\right) \wedge \overline{\left(I_{3}^{+} \vee I_{3}^{-}\right)} & \Longrightarrow \\
\left(I_{1}^{+} \vee p\right) \wedge\left(I_{1}^{-} \vee \bar{p}\right) \wedge\left(I_{2}^{+} \vee p\right) \wedge\left(I_{2}^{-} \vee \bar{p}\right) \wedge\left(\overline{I_{3}^{+}} \vee p\right) \wedge\left(\overline{I_{3}^{-}} \vee \bar{p}\right) & \Longrightarrow \\
\left(\left(I_{1}^{+} \wedge I_{2}^{+} \wedge \overline{I_{3}^{+}}\right) \vee p\right) \wedge\left(\left(I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}}\right) \vee \bar{p}\right) & \Longrightarrow{ }^{\text {resol }} \\
\left(I_{1}^{+} \wedge I_{2}^{+} \wedge \overline{I_{3}^{+}}\right) \vee\left(I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}}\right) & \Longrightarrow{ }^{\text {i.h. }} \perp
\end{aligned}
$$

Case $5\left(p\right.$ in $\left.\phi_{1} \phi_{2} \phi_{3}\right)$. If $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(a b, a b, a b)$:

$$
\begin{aligned}
&\left(I_{1}^{+} \vee p\right) \wedge\left(I_{1}^{-} \vee \bar{p}\right) \wedge\left(I_{2}^{+} \vee p\right) \wedge\left(I_{2}^{-} \vee \bar{p}\right) \wedge \overline{\left(\left(I_{3}^{+} \vee p\right) \wedge\left(I_{3}^{-} \vee \bar{p}\right)\right)} \Longleftrightarrow \\
&\left(I_{1}^{+} \vee p\right) \wedge\left(I_{1}^{-} \vee \bar{p}\right) \wedge\left(I_{2}^{+} \vee p\right) \wedge\left(I_{2}^{-} \vee \bar{p}\right) \wedge\left(\left(\overline{I_{3}^{+}} \wedge \bar{p}\right) \vee\left(\overline{I_{3}^{-}} \wedge p\right)\right) \Longrightarrow \\
&\left(\left(I_{1}^{+} \vee p\right) \wedge\left(I_{2}^{+} \vee p\right) \wedge \overline{I_{3}^{+}} \wedge \bar{p}\right) \vee\left(\left(I_{1}^{-} \vee \bar{p}\right) \wedge\left(I_{2}^{-} \vee \bar{p}\right) \wedge \overline{I_{3}^{-}} \wedge p\right) \Longrightarrow \\
&\left(I_{1}^{+} \wedge I_{2}^{+} \wedge \overline{I_{3}^{+}}\right) \vee\left(I_{1}^{-} \wedge I_{2}^{-} \wedge \overline{I_{3}^{-}}\right) \Longrightarrow{ }^{\text {resol }} \\
& \text { i.h. } \\
& \hline
\end{aligned}
$$

All the remaining cases are treated in a similar manner, to reach a point (possibly after a resolution step if some of the labels are $a b$) where the inductive hypothesis can be applied.

Lemma 2. If $\left\{\right.$ Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $\left.p_{L_{3}}\right\}$ has BGSA, then $\left\{L_{1}, L_{2}, L_{3}\right\}$ satisfies $C C_{B G S A}$.
Proof (by contradiction). We remind here the BGSA constraints $C C_{B G S A}$:

$$
\left(\alpha_{1}, \alpha_{2}\right),\left(\delta_{1}, \delta_{2}\right) \preceq\{(a b, a b),(b, a),(a, b)\}, \beta_{2} \preceq \beta_{3}, \gamma_{1} \preceq \gamma_{3}, \delta_{1} \preceq \delta_{3}, \delta_{2} \preceq \delta_{3}
$$

We show that, if any of the $C C_{B G S A}$ constraints is violated, there exist an unsatisfiable formula $\Phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ and a refutation such that $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{3}}$. The possible violations for the $C C_{B G S A}$ constraints consist of:

1. $\left(\alpha_{1}, \alpha_{2}\right),\left(\delta_{1}, \delta_{2}\right) \in\{(a, a),(a b, a),(a, a b)\}$
2. $\left(\beta_{2}, \beta_{3}\right),\left(\gamma_{1}, \gamma_{3}\right),\left(\delta_{1}, \delta_{3}\right),\left(\delta_{2}, \delta_{3}\right) \in\{(a, a b),(a, b),(a b, b)\}$

It is sufficient to take into account $\left(\alpha_{1}, \alpha_{2}\right) \in\{(a, a),(a, a b)\}$ and $\left(\beta_{2}, \beta_{3}\right) \in$ $\{(a, a b),(a, b),(a b, b)\}$. The remaining cases follow by symmetry.
(1) $\left(\alpha_{1}, \alpha_{2}\right)=(a, a): \phi_{1}=(p \vee \bar{q}) \wedge r, \phi_{2}=(\bar{p} \vee \bar{r}) \wedge q, \phi_{3}=s$

$$
\begin{aligned}
& A=\phi_{1} \quad B=\phi_{2}, \phi_{3} \\
& \frac{p \vee \bar{q}[\perp] \quad \bar{p} \vee \bar{r}[p \wedge r]}{} \begin{array}{ll}
& \\
\frac{\bar{q} \vee \bar{r}[p \wedge r]}{} \quad r[\perp] & \\
\frac{\bar{q}[p \wedge r]}{\perp[(p \wedge r) \vee \bar{q}]} & q[\bar{q}]
\end{array} \\
& A=\phi_{2} \quad B=\phi_{1}, \phi_{3} \\
& \frac{p \vee \bar{q}[\bar{p} \wedge q] \quad \bar{p} \vee \bar{r}[\perp]}{} \quad \begin{array}{ll}
& \\
\frac{\bar{q} \vee[\bar{r}[\bar{p} \wedge q]}{} & \\
\frac{\bar{q}[(\bar{p} \wedge q) \vee \bar{r}]}{\perp[(\bar{p} \wedge q) \vee \bar{r}]} & q[\perp] \\
&
\end{array}
\end{aligned}
$$

We have $I_{\phi_{1}, L_{1}}=(p \wedge r) \vee \bar{q}, I_{\phi_{2}, L_{2}}=(\bar{p} \wedge q) \vee \bar{r}, I_{\phi_{1} \phi_{2}, L_{3}}=\perp$ since s is absent from the proof. Then, $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{3}}$: a counter model is \bar{q}, \bar{r}.
(2) $\left(\alpha_{1}, \alpha_{2}\right)=(a, a b): \phi_{1}=(p \vee \bar{q}) \wedge r, \phi_{2}=(\bar{p} \vee \bar{r}) \wedge q, \phi_{3}=s$

$$
\begin{gathered}
A=\phi_{2} \quad B=\phi_{1}, \phi_{3} \\
\frac{p \vee \bar{q}[\top] \quad \bar{p} \vee \bar{r}[\perp]}{} \quad q[\perp] \\
\frac{\bar{q} \vee \bar{r}[\bar{p}]}{\frac{\bar{r}[(\bar{p} \vee \bar{q}) \wedge q]}{\perp[((\bar{p} \vee \bar{q}) \wedge q) \vee \bar{r}]}} r[\top]
\end{gathered}
$$

We have $I_{\phi_{1}, L_{1}}=(p \wedge r) \vee \bar{q}$ and $I_{\phi_{1} \phi_{2}, L_{3}}=\perp$ as in (1), while $I_{\phi_{2}, L_{2}}=$ $((\bar{p} \vee \bar{q}) \wedge q) \vee \bar{r}$. Then, $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{3}}$: a counter model is \bar{q}, \bar{r}.
(3) $\left(\beta_{2}, \beta_{3}\right)=(a, b): \phi_{1}=s, \phi_{2}=(\bar{p} \vee \bar{r}) \wedge q, \phi_{3}=(p \vee \bar{q}) \wedge r$

$$
\begin{aligned}
& A=\phi_{1}, \phi_{2} \quad B=\phi_{3} \\
& \frac{p \vee \bar{q}[\mathrm{\top}] \quad \bar{p} \vee \bar{r}[\bar{p} \vee \bar{r}]}{\frac{\bar{q} \vee \bar{r}[\bar{p} \vee \bar{r}]}{} \quad r[\mathrm{~T}]} \\
& \frac{\bar{q}[\bar{p} \vee \bar{r}]}{\perp[(\bar{p} \vee \bar{r}) \wedge q]}
\end{aligned} \quad q[q] \frac{}{} \quad .
$$

We have $I_{\phi_{1}, L_{1}}=\top$, since s is absent from the proof, while $I_{\phi_{2}, L_{2}}=(\bar{p} \wedge q) \vee \bar{r}$ as in $(1) ; I_{\phi_{1} \phi_{2}, L_{3}}=(\bar{p} \vee \bar{r}) \wedge q$. Then, $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{3}}$: a counter model is \bar{q}, \bar{r}.
(4) $\left(\beta_{2}, \beta_{3}\right)=(a, a b): \phi_{1}=s, \phi_{2}=(\bar{p} \vee \bar{r}) \wedge q, \phi_{3}=(p \vee \bar{q}) \wedge r$

\[

\]

$I_{\phi_{1}, L_{1}}=\top$ as in (3), $I_{\phi_{2}, L_{2}}=(\bar{p} \wedge q) \vee \bar{r}$ as in (1), $I_{\phi_{1} \phi_{2}, L_{3}}=(\bar{p} \vee \bar{r} \vee \bar{q}) \wedge q$. Then, $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{3}}$: a counter model is \bar{q}, \bar{r}.
(5) $\left(\beta_{2}, \beta_{3}\right)=(a b, b): \phi_{1}=s, \phi_{2}=(\bar{p} \vee \bar{r}) \wedge q, \phi_{3}=(p \vee \bar{q}) \wedge r$
$I_{\phi_{1}, L_{1}}=\top$ as in (3), $I_{\phi_{2}, L_{2}}=((\bar{p} \vee \bar{q}) \wedge q) \vee \bar{r}$ as in $(2), I_{\phi_{1} \phi_{2}, L_{3}}=(\bar{p} \vee \bar{r}) \wedge q$ as in (3). Then, $I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{3}}$: a counter model is \bar{q}, \bar{r}.

Lemma 3. If $\left\{L_{1}, \ldots, L_{n+1}\right\}$ satisfies $C C_{n G S A}$, then the family $\left\{\operatorname{Itp}_{L_{1}}, \ldots\right.$, Itp $\left._{L_{n+1}}\right\}$ has n-GSA.

Proof (by structural induction). We assume that the $C C_{n G S A}$ constraints have been restricted in a similar manner to what shown in $C C_{B G S A}^{*}$. We prove that, given a refutation of Φ, for any clause C in the refutation the partial interpolants satisfy $I_{\phi_{1}, L_{1}}(C) \wedge \ldots \wedge I_{\phi_{n}, L_{n}}(C) \Longrightarrow I_{\phi_{1} \ldots \phi_{n}, L_{n+1}}(C)$, that is $I_{\phi_{1}, L_{1}}(C) \wedge \ldots \wedge$ $I_{\phi_{n}, L_{n}}(C) \wedge \overline{I_{\phi_{1} \ldots \phi_{n}, L_{n+1}}(C)} \Longrightarrow \perp$.
Base case (leaf). Remember that, if $C \in \phi_{i}, i \neq n+1, C$ has class A in configuration i (hence the partial interpolant is $C L_{i, b}$) and in configuration $n+1$ $\left(\overline{\left.C\right|_{n+1, b}}\right)$ and class B in all the other configurations $j \neq i, n+1\left(\overline{\left.C\right|_{j, a}}\right)$. If $C \in \phi_{n+1}$, it has class B in all configurations $\left(C\left\lfloor_{n+1, a}\right.\right.$ in configuration $n+1$, $\overline{C L_{i, a}}$ everywhere else). So we need to prove:

$$
\begin{aligned}
& \overline{C L_{1, a}} \wedge \ldots \wedge \overline{C L_{i-1, a}} \wedge C L_{i, b} \wedge \overline{C L_{i+1, a}} \wedge \ldots \wedge \overline{C L_{n, a}} \wedge \overline{C L_{n+1, b}} \Longrightarrow \perp
\end{aligned}
$$

respectively for $i \neq n+1$ and $i=n+1$.
We can divide the variables of $C \in \phi_{i}$ into partitions, obtaining $C=C_{\phi_{i}} \vee$ $C_{\phi_{i} \phi_{2}} \vee \ldots \vee C_{\phi_{1} \ldots \phi_{n}}$, leading to a system of constraints as shown for BGSA; the conjunction of:

$$
\begin{gathered}
\left.\overline{\left(C_{\phi_{i}} \vee C_{\phi_{i} \phi_{2}} \vee \ldots \vee C_{\phi_{1} \ldots \phi_{n}}\right)}\right|_{1, a} \\
\vdots \\
\left.\left(C_{\phi_{i}} \vee C_{\phi_{i} \phi_{2}} \vee \ldots \vee C_{\phi_{1} \ldots \phi_{n}}\right)\right|_{i, b} \\
\vdots \\
\left.\overline{\left(C_{\phi_{i}} \vee C_{\phi_{i} \phi_{2}} \vee \ldots \vee C_{\phi_{1} \ldots \phi_{n}}\right)}\right|_{n, a}
\end{gathered}
$$

must imply \perp for every $\phi_{i}, i \neq n+1$ (similarly for ϕ_{n+1}). All the simplifications are carried out in line with the proof of Lemma 1 .
Inductive step (inner node). The proof is a again a direct generalization of the proof of Lemma 1

Performing a case splitting on the pivot and on its labeling vector, the starting point is a conjunction of the partial interpolants $I_{1} \wedge \ldots \wedge I_{n} \wedge \overline{I_{n+1}}$ of C, which is then expressed in terms of the partial interpolants for the antecedents. The goal is to reach a formula $\psi=\left(I_{1}^{+} \wedge \ldots \wedge I_{n}^{+} \wedge \overline{I_{n+1}^{+}}\right) \vee\left(I_{1}^{-} \wedge \ldots \wedge I_{n}^{-} \wedge \overline{I_{n+1}^{-}}\right)$ where the inductive hypothesis can be applied.

The key observation is that the restricted $C C_{n G S A}$ constraints give rise to a combination of boolean operators (after the dualization of the ones in $\overline{I_{n+1}}$ due to the negation) which makes it always possible to obtain the desired ψ, possibly with the help of the resolution rule.

Lemma 4. If a family $\mathcal{F}=\left\{\right.$ Itp $_{L_{1}}, \ldots$, Itp $\left._{L_{n+1}}\right\}$ has $n-G S A$, then $\left\{L_{1}, \ldots, L_{n+1}\right\}$ satisfies $C C_{n G S A}$.

Proof (by induction and contradiction). We prove the theorem by strong induction on $n \geq 2$.
Base Case $(n=2)$. Follows by Lemma 2,
Inductive Step. Assume the thesis holds for all $k \leq n-1$, we prove it for $k=n$. By Lemma 17, if a family $\mathcal{F}=\left\{\right.$ Itp $_{L_{1}}, \ldots$, Itp $\left._{L_{n+1}}\right\}$ has n-GSA, then any subfamily of size $k+1 \leq n$ has k-GSA. Combined with the inductive hypothesis, this implies that it is sufficient to establish the theorem for every variable p and labeling vectors $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n+1}\right)$ corresponding to partitions $\phi_{1} \cdots \phi_{n}$ and $\phi_{1} \cdots \phi_{n+1}$, respectively.

We only show the case of $\boldsymbol{\alpha}$. The proof for $\boldsymbol{\beta}$ is analogous. W.l.o.g., assume that there is a p such that $\boldsymbol{\alpha}$ violates $C C_{n G S A}$ for $\alpha_{1}=\alpha_{2}=a$ (other cases are symmetric). Construct a family of labelings $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{n+1}^{\prime}\right\}$ from $\left\{L_{1}, \ldots, L_{n+1}\right\}$ by (1) taking all labelings of partitions involving only subsets of ϕ_{1}, ϕ_{2} and ϕ_{n+1}. For example, vectors $\left(\eta_{3}, \eta_{4}\right)$ and $\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{n+1}\right)$ would be discarded, while $\left(\eta_{1}, \eta_{2}\right)$ and $\left(\eta_{1}, \eta_{2}, \eta_{n+1}\right)$ would be kept; and (2) for p, set the labeling vector of partition $\phi_{1} \phi_{2}$ to $\left(\alpha_{1}, \alpha_{2}\right)=(a, a)$. By Lemma 2, $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{n+1}^{\prime}\right\}$ does not have BGSA. Let $\Phi^{\prime}=\left\{\phi_{1}, \phi_{2}, \phi_{n+1}\right\}$ be such that $I_{\phi_{1}, L_{1}^{\prime}} \wedge I_{\phi_{2}, L_{2}^{\prime}} \nRightarrow I_{\phi_{1} \phi_{2}, L_{n+1}^{\prime}}$, and let Π be the corresponding resolution refutation.

Construct $\Phi=\left\{\phi_{1}, \phi_{2}, p, \ldots, p, \phi_{n+1}\right\}$ by adding $(n-2)$ copies of p to Φ^{\prime}. Φ is unsatisfiable, and Π is also a valid refutation for Φ. From this point, we assume that all interpolants are generated from Π.

Assume, by contradiction, that \mathcal{F} has n-GSA. Then,

$$
I_{\phi_{1}, L_{1}} \wedge \cdots \wedge I_{\phi_{n}, L_{n}} \Longrightarrow I_{\phi_{1} \cdots \phi_{n}, L_{n+1}}
$$

But, because $\phi_{3}, \ldots, \phi_{n}$ do not contribute any clauses to $\Pi, I_{\phi_{i}, L_{i}}=\top$ for $3 \leq i \leq n$. Hence,

$$
I_{\phi_{1}, L_{1}} \wedge I_{\phi_{2}, L_{2}} \Longrightarrow I_{\phi_{1} \phi_{2}, L_{n+1}}
$$

However, by construction:

$$
I_{\phi_{1}, L_{1}}=I_{\phi_{1}, L_{1}^{\prime}} \quad I_{\phi_{2}, L_{2}}=I_{\phi_{2}, L_{2}^{\prime}} \quad I_{\phi_{1} \phi_{2}, L_{n+1}}=I_{\phi_{1} \phi_{2}, L_{n+1}^{\prime}}
$$

which leads to a contradiction. Hence $\boldsymbol{\alpha}$ must satisfy $C C_{n G S A}$.
Proposition 3. Any family $\left\{\operatorname{Itp}_{L_{0}}\right.$, Itp $_{L_{1}}$, Itp $\left._{L_{2}}\right\}$ has 2-PI.
Proof. Recall that $I_{\top, L_{0}}=\top$ and $I_{\phi_{1} \phi_{2}, L_{2}}=\perp$ for any L_{0}, L_{2}. Hence, 2-PI reduces to the following two conditions: $\phi_{1} \Longrightarrow I_{\phi_{1}, L_{1}}, I_{\phi_{1}, L_{1}} \wedge \phi_{2} \Longrightarrow \perp$, which are true of any Craig interpolant.

Corollary 4. A family $\left\{\right.$ Itp $_{L_{1}}$, Itp $\left._{L_{2}}\right\}$ has 2-SA if and only if $\left\{L_{1}, L_{2}\right\}$ satisfies $\left(\alpha_{1}, \alpha_{2}\right) \preceq\{(a b, a b),(a, b),(b, a)\}$

Proof. Follows from Lemma 2 and Lemma 1.
Lemma 5. There exists a family $\left\{\right.$ Itp $_{L_{0}}$, Itp $_{L_{1}}$, Itp $\left._{L_{2}}\right\}$ that has 2-PI and a family $\left\{\right.$ Itp $_{L_{1}^{\prime}}$, Itp $\left.p_{L_{2}^{\prime}}\right\}$ that has 2-SA, but the family $\left\{\right.$ Itp $_{L_{0}}$, Itp $_{L_{1}}$, Itp $_{L_{2}}$, Itp $_{L_{1}^{\prime}}$, Itp $\left._{L_{2}^{\prime}}\right\}$ does not have 2-STI.

Proof. By Theorem[4, a necessary condition for 2-STI is that $\left\{\operatorname{Itp}_{L_{1}}, \operatorname{Itp}_{L_{2}^{\prime}}, \operatorname{Itp} p_{L_{2}}\right\}$ has BGSA. By Proposition [3, $\left\{L_{0}, L_{1}, L_{2}\right\}$ can be arbitrary. By Theorem 9 and Corollary 4, there exists $\left\{L_{1}^{\prime}, L_{2}^{\prime}\right\}$ such that $\left\{\right.$ Itp $\left._{L_{1}^{\prime}}, I t p_{L_{2}^{\prime}}\right\}$ has 2-SA, but $\left\{\right.$ Itp $_{L_{1}}$, Itp $\left._{L_{2}^{\prime}}, I t p_{L_{2}}\right\}$ does not have BGSA.
Lemma 6. The set of labeling constraints of any $n-G S A$ strengthening is a subset of constraints of $n-G S A$.

Proof. Assume w.l.o.g we strengthen the first subformula ϕ_{1}. Then any variable in any partition which does not involve ϕ_{1} has the same labeling vector and its n-GSA labeling constraints are also the same. Instead, variables in any partition $\phi_{1} \phi_{i_{2}} \ldots \phi_{i_{k}}$ have now a labeling vector $\left(\alpha_{i_{2}}, \ldots, \alpha_{i_{k}}\right)$, where the first component α_{1} is missing. Referring to the definition of $C C_{n G S A}$, it is easy to verify that the set of the constraints for the strengthening are a subset of the constraints for n-GSA.

Theorem 13. Any $\mathcal{F}=\left\{\operatorname{Itp}_{L_{i_{1}}}, \ldots\right.$, Itp $_{L_{i_{k}}}$, Itp $\left._{L_{n+1}}\right\}$ s.t. $k<n$ that has an n-GSA strengthening property can be extended to a family that has n-GSA.
Proof. Refer to the definition of $C C_{n G S A}$ and to Lemma 6. We can complete \mathcal{F} for example by introducing $n-k$ instances of McMillan's system Itp $_{M}$. Both constraints (1) and (2) for n-GSA are satisfied, since $I t p_{M}$ always assigns label b (recall the order $b \preceq a b \preceq a$). Note that $I t p_{M}$ is not necessarily the only possible choice.

Theorem 14. PI holds for all single LISs.
Proof. In [17] we addressed n-PI for a family of LISs $\left\{\operatorname{Itp}_{L_{0}}, \ldots\right.$, Itp $\left._{L_{n}}\right\}$. Given an inconsistent $\Phi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, Table 3 shows the labelings L_{i}, L_{i+1} for an arbitrary step $I_{\phi_{1} \ldots \phi_{i}, L_{i}} \wedge \phi_{i+1} \Longrightarrow I_{\phi_{1} \ldots \phi_{i} \phi_{i+1}, L_{i+1}}\left(\psi_{1}=\phi_{1} \wedge \ldots \wedge \phi_{i}, \psi_{2}=\phi_{i+1}\right.$, $\left.\psi_{3}=\phi_{i+2} \wedge \ldots \wedge \phi_{n}\right):$

Table 3: n-PI step.

p in $?$	Variable class, label	
	$\psi_{1} \mid \psi_{2} \psi_{3}$	$\psi_{1} \psi_{2} \mid \psi_{3}$
ψ_{1}	A, a	A, a
ψ_{2}	B, b	A, a
ψ_{3}	B, b	B, b
$\psi_{1} \psi_{2}$	$A B, \alpha_{1}$	A, a
$\psi_{2} \psi_{3}$	B, b	$A B, \beta_{2}$
$\psi_{1} \psi_{3}$	$A B, \gamma_{1}$	$A B, \gamma_{2}$
$\psi_{1} \psi_{2} \psi_{3}$	$A B, \delta_{1}$	$A B, \delta_{2}$

We identified a set of constraints for L_{i}, L_{i+1} as:

$$
\gamma_{1} \preceq \gamma_{2} \quad \delta_{1} \preceq \delta_{2}
$$

For a single LIS, $\gamma_{1}=\gamma_{2}$ and $\delta_{1}=\delta_{2}$, so all constraints are trivially satisfied for $0 \leq i \leq n-1$.

| Leaf: $C[I]$ | Inner node: $\frac{C^{+} \vee p: \alpha\left[I^{+}\right]}{} C^{-} \vee \bar{p}: \beta\left[I^{-}\right]$ |
| :--- | :---: | :---: | :---: |
| $I= \begin{cases}C \downharpoonright b & \text { if } C \in A \\ \neg(C \downharpoonright a) & \text { if } C \in B\end{cases}$ | $I= \begin{cases}I^{+} \vee I^{-} & \text {if } \alpha \sqcup \beta=a \\ I^{+} \wedge I^{-} & \text {if } \alpha \sqcup \beta=b \\ \left(I^{+} \vee p\right) \wedge\left(I^{-} \vee \bar{p}\right) & \text { if } \alpha \sqcup \beta=a b\end{cases}$ |

Labeled interpolation system $\operatorname{Itp} p_{L}$.

C Complexity of the Labeled Interpolation Systems

We briefly examine here the complexity of a Labeled Interpolation System $\operatorname{It} p_{L}$. A simple realization of the interpolation algorithm of Fig. 3 (reported above) is based on a topological visit of the refutation DAG.

While visiting a leaf, the partial interpolant is computed by restricting the clause w.r.t. to a or b, given a labeling L for its shared variables. Note that it is not necessary to specify labels for local variables, since variables of class A can only have label a and variables of class B only label b.

While visiting an inner node, (i) the labels of the shared variables of the resolvent clause are updated based on the labels of the antecedent clauses, (ii) the label of the pivot is computed in the same way, and (iii) the partial interpolant is obtained by a boolean combination of the (already computed) partial interpolants of the antecedents, plus possibly two occurrences of the pivot.

We distinguish between the complexity of generating partial interpolants for leaves and inner nodes as follows.
Leaf. The cost of restricting a clause C is $|C|$. Checking whether a clause or a variable has class $A, B, A B$ takes constant time.
Inner node. If C is the resolvent clause, (i) takes $|C|$, both (ii) and (iii) take constant time. We assume that, for each node, the labels of shared variables are encoded in a bit-vector-like data structure, so that retrieving the label of a variable takes constant time.

Assume the DAG has N nodes and the largest clause has size S, then the overall complexity is $O(N S)$. In practice, $S \ll N$ and the complexity is linear in the size of the DAG. The overhead introduced by the computations due to the use of a labeling is thus negligible.

[^0]: * This material is based upon work funded and supported by the Department of Defense under Contract No FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
 ited distribution. DM-0000469.
 ${ }^{3}$ We write $\operatorname{Itp}(A \mid B)$ for an interpolant of A and B, and I_{A} when B is clear from the context.

[^1]: ${ }^{4}$ http://www.cprover.org/cbmc
 ${ }^{5} \mathrm{http}: / /$ www.cprover.org/satabs

[^2]: ${ }^{6}$ The notion of families is additionally a useful technical tool to make the discussion and the results more general and easier to compare with the prior work of CAV'12 [17] (which formally defined families for the first time).

[^3]: ${ }^{7}$ All proofs can be found in the appendix.

[^4]: ${ }^{8}$ http://mathsat.fbk.eu/

