Skip to main content

Interpolation Properties and SAT-Based Model Checking

  • Conference paper
Automated Technology for Verification and Analysis

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8172))

Abstract

Craig interpolation is a widespread method in verification, with important applications such as Predicate Abstraction, CounterExample Guided Abstraction Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model checking techniques based on interpolation require collections of interpolants to satisfy particular properties, to which we refer as “collectives”; they do not hold in general for all interpolation systems and have to be established for each particular system and verification environment. Nevertheless, no systematic approach exists that correlates the individual interpolation systems and compares the necessary collectives. This paper proposes a uniform framework, which encompasses (and generalizes) the most common collectives exploited in verification. We use it for a systematic study of the collectives and of the constraints they pose on propositional interpolation systems used in SAT-based model checking.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. This material has been approved for public release and unlimited distribution. DM-0000469.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-Based Algorithm for Inter-procedural Verification. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property-Directed Reachability. In: FMCAD 2011 (2011)

    Google Scholar 

  5. Gurfinkel, A., Rollini, S., Sharygina, N.: Interpolation Properties and SAT-based Model Checking - Extended Version, http://arxiv.org/abs/1212.4650

  6. Heizmann, M., Hoenicke, J., Podelski, A.: Nested Interpolants. In: POPL 2010 (2010)

    Google Scholar 

  7. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from Proofs. In: POPL 2004, pp. 232–244 (2004)

    Article  Google Scholar 

  8. Huang, G.: Constructing Craig Interpolation Formulas. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Krajícek, J.: Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic. J. Symb. Log. 62(2), 457–486 (1997)

    Article  MathSciNet  Google Scholar 

  12. McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. McMillan, K.L.: Applications of Craig Interpolation to Model Checking. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 22–23. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. McMillan, K.L., Rybalchenko, A.: Solving Constrained Horn Clauses Using Interpolation. Technical Report MSR-TR-2013-6, Microsoft Research (2013)

    Google Scholar 

  17. Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations. J. Symb. Log. 62(3), 981–998 (1997)

    Article  MathSciNet  Google Scholar 

  18. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging Interpolant Strength in Model Checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 193–209. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded Model Checking with Interpolation-based Function Summarization. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental Upgrade Checking by Means of Interpolation-based Function Summaries. In: FMCAD 2012 (2012)

    Google Scholar 

  22. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as Classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Vizel, Y., Grumberg, O.: Interpolation-Sequence Based Model Checking. In: FMCAD 2009, pp. 1–8 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Gurfinkel, A., Rollini, S.F., Sharygina, N. (2013). Interpolation Properties and SAT-Based Model Checking. In: Van Hung, D., Ogawa, M. (eds) Automated Technology for Verification and Analysis. Lecture Notes in Computer Science, vol 8172. Springer, Cham. https://doi.org/10.1007/978-3-319-02444-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02444-8_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02443-1

  • Online ISBN: 978-3-319-02444-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics