Abstract
Craig interpolation is a widespread method in verification, with important applications such as Predicate Abstraction, CounterExample Guided Abstraction Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model checking techniques based on interpolation require collections of interpolants to satisfy particular properties, to which we refer as “collectives”; they do not hold in general for all interpolation systems and have to be established for each particular system and verification environment. Nevertheless, no systematic approach exists that correlates the individual interpolation systems and compares the necessary collectives. This paper proposes a uniform framework, which encompasses (and generalizes) the most common collectives exploited in verification. We use it for a systematic study of the collectives and of the constraints they pose on propositional interpolation systems used in SAT-based model checking.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. This material has been approved for public release and unlimited distribution. DM-0000469.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-Based Algorithm for Inter-procedural Verification. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012)
Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)
D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)
Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property-Directed Reachability. In: FMCAD 2011 (2011)
Gurfinkel, A., Rollini, S., Sharygina, N.: Interpolation Properties and SAT-based Model Checking - Extended Version, http://arxiv.org/abs/1212.4650
Heizmann, M., Hoenicke, J., Podelski, A.: Nested Interpolants. In: POPL 2010 (2010)
Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from Proofs. In: POPL 2004, pp. 232–244 (2004)
Huang, G.: Constructing Craig Interpolation Formulas. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)
Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)
Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)
Krajícek, J.: Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic. J. Symb. Log. 62(2), 457–486 (1997)
McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)
McMillan, K.L.: Applications of Craig Interpolation to Model Checking. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 22–23. Springer, Heidelberg (2004)
McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
McMillan, K.L., Rybalchenko, A.: Solving Constrained Horn Clauses Using Interpolation. Technical Report MSR-TR-2013-6, Microsoft Research (2013)
Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations. J. Symb. Log. 62(3), 981–998 (1997)
Rollini, S.F., Sery, O., Sharygina, N.: Leveraging Interpolant Strength in Model Checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 193–209. Springer, Heidelberg (2012)
Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)
Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded Model Checking with Interpolation-based Function Summarization. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012)
Sery, O., Fedyukovich, G., Sharygina, N.: Incremental Upgrade Checking by Means of Interpolation-based Function Summaries. In: FMCAD 2012 (2012)
Sharma, R., Nori, A.V., Aiken, A.: Interpolants as Classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012)
Vizel, Y., Grumberg, O.: Interpolation-Sequence Based Model Checking. In: FMCAD 2009, pp. 1–8 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Gurfinkel, A., Rollini, S.F., Sharygina, N. (2013). Interpolation Properties and SAT-Based Model Checking. In: Van Hung, D., Ogawa, M. (eds) Automated Technology for Verification and Analysis. Lecture Notes in Computer Science, vol 8172. Springer, Cham. https://doi.org/10.1007/978-3-319-02444-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-02444-8_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02443-1
Online ISBN: 978-3-319-02444-8
eBook Packages: Computer ScienceComputer Science (R0)